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Foreword

Dear lot sizing community, dear friends,

It is a great pleasure to welcome you to the 15th International Workshop on Lot Sizing. This is
the second time that the workshop is organized in the Netherlands. As some of you will certainly
remember, the 2012 edition was held in Rotterdam. This year we meet in the wonderful city of
Groningen. The most well-known slogan for Groningen is “Er gaat niets boven Groningen” which
translates to “Nothing tops Groningen”. This slogan emphasizes the unique and special qualities
of the city and the province of the same name, making it a popular saying within Dutch culture. It
highlights Groningen’s vibrant student life, historical architecture, and cultural scene.

We are happy to continue the tradition of the previous workshops to discuss high quality research
in a relaxed atmosphere. As in the previous editions, the aim of the workshop is the following:

“The goal of the workshop is to cover recent advances in lot sizing: new approaches for classical
problems, new relevant problems, integration of lot sizing with other problems such as scheduling,
distribution or vehicle routing, presentation of case studies, etc. Additionally, the workshop aims
to maintain an exchange of ideas between researchers and enhance fruitful collaboration.”

We would like to thank the Association of European Operational Research Societies (EURO), the
Operations Research section of the Netherlands Society for Statistics and Operations Research
(VVSOR), the Erasmus Research Institute of Management (ERIM), the Econometric Institute at
Erasmus University Rotterdam, and the Research Institute of the Faculty of Economics and Busi-
ness (FEBRI) at University of Groningen for their (financial) support in organizing the workshop.

We wish you a pleasant stay in Groningen and hope that you find the workshop inspiring and pro-
ductive.

On behalf of the IWLS 2025 Organizing Committee,
Albert Wagelmans
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Scheduling Problem
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Sidhoum (p25)

12:30-14:00 Lunch

14:00-15:00 Session 3 – Lot-sizing with remanufacturing (Chair: Florian Sahling)

Remanufacturing and refurbishment of pre-owned consumer electronic products
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Mourad Terzi, Nabil Absi, Xavier Schepler, Antoine Jeanjean (p29)

Dynamic lot sizing model with remanufacturing and separate setup costs: Time
complexity and optimality

Chee-Khian Sim (p33)
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Solving electricity distribution planning problem
with battery cycling considerations

Natalia Jorquera-Bravo
UMA, ENSTA Paris, IP Paris, France.
CEDRIC, CNAM, 75003 Paris, France.
PDSPS, Department of Industrial Engineering, University of Santiago of Chile.
natalia.jorquera@ensta-paris.fr

Sourour Elloumi
UMA, ENSTA Paris, IP Paris, France.
CEDRIC, CNAM, 75003 Paris, France.
ENSIIE, 91025 Evry, France.
sourour.elloumi@ensta-paris.fr

Safia Kedad-Sidhoum
CEDRIC, CNAM, 75003 Paris, France.
safia.kedad sidhoum@cnam.fr

Agnès Plateau
CEDRIC, CNAM, 75003 Paris, France.
agnes.plateau alfandari@cnam.fr

Abstract

We address an electricity distribution planning problem in a self-consumption
community where both generation and battery storage are shared among all
members. Each user has an individual demand, but energy generation and
storage are centrally managed. No energy exchanges between users are al-
lowed. The goal is to minimize the total community cost, which encompasses
energy procurement expenses and incorporates a constraint restricting battery
cycling. We formulate the problem as a mixed-integer program and evaluate its
performance under varying demand scenarios. Our results show that explicitly
modeling battery cycling impacts operational decisions and overall system cost.

1 Problem statement

In this work, we study energy communities formed within buildings where residents 
collectively invest in photovoltaic (PV) panels and a shared electricity storage system. 
Each household can meet its electricity demand through energy supplied by the PV
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panels, the shared battery, or the main grid. Surplus electricity can either be stored
in the battery or sold back to the grid; however, energy exchanges between users
are not permitted. Each household is equipped with a smart meter that monitors
consumption at each time period.

A central community manager is responsible for distributing the PV-generated
electricity at each time step. Operational constraints include: (i) a user cannot
simultaneously charge and discharge the battery, and (ii) a user cannot buy and sell
electricity to the grid within the same time period.

We model the community as a microgrid comprising a set H of smart homes, a
PV panel array, a shared battery system, and a connection to the main grid. The
planning horizon consists of discrete time intervals T of duration δ hours, typically
δ “ 0.25 (15 minutes). Each household j P H has a known electricity demand Dj,t

at each time period t P T . The battery is characterized by charging and discharging
efficiencies γc, γd P p0, 1q, an initial state of charge S0, capacity bounds Smin and
Smax, and maximum charge/discharge rates Fc and Fd. At each time step t, PV
panels generate CPV

t . Electricity can be purchased from the grid at a time-dependent
price νt, discharged from the battery at a cost µ, or sold to the grid at a fixed price β,
set by the French Energy Regulatory Commission. As is typical in France, the sale
price β is strictly less than the purchase price νt for all t P T . We do not account
for PV generation costs, assuming these are negligible due to the absence of fuel and
operational labor, and considering maintenance as part of the upfront investment.

As a main extension of the study presented in [4], we analyze battery health by
considering the number of charging cycles. A charging cycle begins when the battery
switches from an active discharging state to a charging state, and it ends when it
switches from an active charging state to an active discharging state. We present a
mathematical formulation to address the electricity distribution planning problem in
collective self-consumption communities and incorporates battery cycling dynamics.
We illustrate the impact of modeling battery cycling on operational decisions.

2 Mathematical formulation

We propose a mixed-integer linear programming (MILP) model to address the elec-
tricity distribution planning problem, incorporating battery cycling dynamics. The
model determines, for each house j P H and time period t P T , the electricity supplied
from three sources: photovoltaic generation pj,t, battery discharge yj,t, and the main
power grid ij,t.

Simultaneously, the model optimizes the amount of electricity each house stores
in the battery zj,t (charging), sells back to the grid gj,t, and the battery’s state of
charge st at the end of each period.

To capture the battery charging behavior over time, we introduce binary variables
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vt, v
down
t , and vupt , which indicate the charging status. Specifically, vt “ 1 if there

exists a household j P H such that zj,t ą 0, and vt “ 0 otherwise. The variable
vdown
t “ 1 denotes the start of a charging cycle, while vupt “ 1 represents the end of a
charging cycle, and thus the beginning of a discharging phase.
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x

cpxq “ δ
ÿ

jPH,tPT
pµyj,t ` νtij,t ´ βgj,tq ` ηc

ÿ

tPT
vupt (1a)

s.t.
ÿ

jPH
pj,t “ CPV

t @t P T (1b)

pj,t ` yj,t ` ij,t ´ zj,t ´ gj,t “ Dj,t @j P H, t P T (1c)

st “ st´1 ` δγc
ÿ

jPH
zj,t ´

δ

γd

ÿ

jPH
yj,t @t P T (1d)

ÿ

jPH
yj,t ď Fdp1 ´ vtq @t P T (1e)

ÿ

jPH
zj,t ď Fcvt @t P T (1f)

Smin ď st ď Smax @t P T (1g)

vt ´ vt´1 “ vdown
t ´ vupt @t ą 1 (1h)

vupt ` vdown
t ď 1 @t (1i)

v1 “ vdown
1 ; s|T | “ S0 (1j)

st, ij,t, gj,t, zj,t, yj,t, pj,t ě 0 @j P H, t P T (1k)

vt, v
down
t , vupt P t0, 1u @t P T (1l)

Equation (1a) defines a well accepted objective function used to compute the total
cost of the community (see [2]). In this formulation, all equipment capacities are
considered fixed and known in advance. Consequently, the model only includes oper-
ational and maintenance costs. The objective accounts for three components: (i) the
maintenance costs related to battery discharging, (ii) the cost of electricity purchased
from the main grid, and (iii) the revenue from selling surplus electricity back to the
grid. Additionally, a cost per battery cycle is incorporated to reflect degradation
effects. We define a representative cycle degradation cost ηc, calculated as ηc “ R

n
,

where R denotes the battery replacement cost, and n is the number of cycles to failure 
under a typical 80% depth of discharge.

Equations (1b) represent the electricity generation of photovoltaic panels for each 
household. Constraints (1c) ensure the energy balance for each house at every time 
period, capturing the interaction between PV production, battery storage, and grid 
exchanges.

Battery operation is governed by Constraints (1d)-(1j). In particular, Equa-
tion (1d) models the state of charge of the battery at the end of each time period 
as a function of its previous state, the energy charged, and the energy discharged

10



during that period. Constraints (1e) and (1f) impose upper bounds on the discharg-
ing and charging power, respectively. Following the methodology proposed in [1],
Constraints (1h) are used to detect the transitions between charging and discharging
cycles. Specifically, the binary variable vdown

t “ 1 if a new charging cycle begins at
time t, which occurs when the battery was not being charged in the previous period
(vt´1 “ 0) and is being charged in the current one (vt “ 1). Similarly, vupt “ 1 if a
charging cycle ends and a discharging cycle begins, i.e., vt´1 “ 1 and vt “ 0. When
vt´1 “ vt, no transition takes place, and both vdown

t and vupt are set to zero.
Without loss of generality, we define the initial condition at time t “ 1 as follows:

if any household is charging the battery at t “ 1, then a charging cycle is assumed
to start, and we set vdown

1 “ 1 and vup1 “ 0. Otherwise, if no charging occurs at
t “ 1, no cycle is initiated, and vdown

1 “ vup1 “ 0. These conditions are formalized in
Constraints (1j).

In this talk, we will present some preliminary results on a real case study in
France. These experiments demonstrate the impact of integrating battery health
considerations into operational decisions and system efficiency.

Acknowledgments This work has been carried out at the Energy4Climate Interdisci-
plinary Center (E4C) of IP Paris and Ecole des Ponts ParisTech, which is in part supported
by 3rd Programme d’Investissements d’Avenir [ANR-18-EUR-0006-02]. The authors also
acknowledge the financial support from Programa de cooperación cient́ıfica ECOS-ANID
project number ECOS230013 and Programa Regional STIC-AMSUD project number AM-
SUD240008.
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Energy-Oriented Batch Scheduling

Lukas Bath
RPTU University Kaiserslautern-Landau, Germany
lukas.bath@rptu.de

Florian Sahling
RPTU University Kaiserslautern-Landau, Germany
florian.sahling@rptu.de

Abstract

Efficient energy usage and the integration of renewable energy sources are
essential for sustainable industrial manufacturing. We present a new mathe-
matical model formulation for energy-oriented scheduling of batch processes.
This model considers multiple products and parallel production resources with
different energy-related production modes. The energy consumption profiles of
the batch processes are mapped in 15-minute intervals, providing a detailed rep-
resentation of time-dependent power demand. This enables peak consumption
and associated costs to be reduced. The model also incorporates an on-site pho-
tovoltaic and energy storage systems. The objective is to determine a feasible
production schedule that minimizes production and energy costs. Preliminary
results show that the integration of energy-related production modes with a
fine-mesh period grid may result in substantial cost savings.

1 Introduction
Energy consumption in the manufacturing industry is a central challenge in addressing 
climate change. Accordingly, reducing energy consumption through suitable meth-
ods is a key objective for companies. In this context, both total energy consumption 
and resulting peak loads are important and of particular relevance. For example, the 
installation of photovoltaic systems can decrease the dependency on external elec-
tricity procurement. The integration of energy storage systems further enhances grid 
independence and supports the transition toward climate neutrality. These changes 
have both economic and ecological benefits f or the companies concerned i n t imes of 
rising energy prices.
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Overviews of energy-oriented planning problems are provided by [1] and [2]. The
present work focuses on energy-oriented scheduling of batch processes. In this short-
term planning context, detailed consideration of process-specific energy profiles is
essential. The resulting energy requirements must be satisfied in addition to the
product-specific demand. A mathematical model is formulated for an energy-oriented
batch scheduling problem with limited peak power consumption and the integration
of an energy storage system in a multi-product setting (EO-BSP-PP-ESS-MP).

2 Problem statement
The EO-BSP-PP-ESS-MP addresses the production of I products over a discrete
planning horizon of T periods. By the end of the planning period, the demand for
each product (di) must be completely satisfied. There are R production resources,
each with a specific capacity of cr.

Production takes place in batches, with a maximum of one batch processed per
resource and period. Preemption is not allowed. Each batch is manufactured using
one of M production modes (also referred to as operating modes), which represent
combinations of energy consumption (e.g., eco or sprint mode) and filling level of the
production resource (e.g., 75 % or 100 %). For example, the resulting operating modes
may include eco75, eco100, sprint75, and sprint100. A batch of product i may require
five periods in mode 1 and eight in mode 2. Production costs are denoted by bcimr

monetary units. Moreover, each batch is associated with an energy profile edimrτ ,
which specifies the power consumption in production period τ for product i in mode m
on resource r. An example of such a profile is shown in Figure 1.
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en
er

gy
co

ns
um

pt
io

n
[k

W
]

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8 9 10

setup filling stirring heating cooling draining

Figure 1: Exemplary energy consumption of a process
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The example process consists of six sequential stages. For each stage, the required
power is depicted over the duration of the respective stage. Machine assignments
remain fixed throughout the process, i.e., each batch is fully processed on a single
production resource. The production system described is supplemented by the energy-
management-system in Figure 2.

onsite power generation

onsite energy storage

grid

offsite power generation

production site

𝑅𝑡
+

𝑅𝑡
−

𝐺𝑡
+

𝐺𝑡
−

𝑆𝑡

Figure 2: Energy flow of the production system

The energy requirements of a batch can be covered by purchasing energy from
the power grid (G+

t ), using on-site photovoltaic generation (St), or discharging of the
energy storage system (R−

t ). The storage system has a maximum capacity Smax and
can either be charged or discharged during each period. Photovoltaic electricity can
be used directly for production, stored in the energy storage system (R+

t ), or fed into
the power grid (G−

t ).
Purchasing energy incurs period-specific costs (ecgrid

t ), while feeding energy into
the power grid yields revenue (erres

t ). In addition to these variable energy costs, the
maximum power drawn from the grid (PPmax) is priced using the power price (pc).
This pricing structure is intended to incentivise avoiding peak production loads.
In the presentation, we will present preliminary numerical results.
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A construction heuristic for a lot-sizing problem
with job-shop scheduling constraints

Dziuba Daryna
European University Viadrina, Department of Supply Chain Management,
Frankfurt (Oder), Germany
dziuba@europa-uni.de
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Abstract

The integration of lot-sizing and scheduling decisions usually ensures better
capacity utilization and is more cost-effective. However, this integration in-
troduces greater complexity than the classical hierarchical approach, in which
lot-sizing decisions are made first and used as input for scheduling activities
second. We propose a fast construction heuristic to address the capacitated
lot-sizing problem that integrates job-shop scheduling constraints. Evaluating
the available capacity in this problem differs substantially from evaluating it
in classical lot-sizing problems, in which periods are independent in terms of
capacity. We formalize this subproblem, which is critical for the proposed con-
struction heuristic and propose several solution strategies. Finally, we present
some numerical results illustrating the efficiency of the proposed construction
heuristic and benchmarking it against other solution methods.

1 Problem description
We consider the multi-item capacitated lot-sizing problem with job-shop scheduling 
constraints. This problem allows for the planning of quantities to produce in a horizon 
discretized in periods and the detailed scheduling of these production quantities on 
machines. The goal is to minimize the total inventory and set-up cost while ensuring
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that the operational capacity constraints are satisfied. We propose a simpler and
faster heuristic than Wolosewicz et al. (2015) to solve the aforementioned problem by
extending the construction heuristic proposed in Dziuba and Almeder (2023).

In this problem, production quantities of different items must be optimized on
a discretized planning horizon of H periods to meet demands at the end of each
period and to minimize various costs. Let us denote by Xit, respectively dit, the lot
size, respectively, the demand, of the item i that must be completed, respectively,
delivered, in period t. Each lot must be processed through a series of operations,
called route, before being completed, and each operation requires a machine. Let
us denote by oitk the k-th operation of a lot of item i that is finished in period t.
Therefore, operation oitk must be finished before oitk+1 starts. oitKi

denotes the last
operation in the route of item i. Moreover, the sequence in which operations are
processed on each machine is given. Let us denote by S the set of pairs of operations
(o, o′) such that o is sequenced before o′ on a machine.

To allow for a compact mathematical model, the indices i, t, and k are used for all
the parameters and variables related to the operation if applicable. Let Citk denote
the completion time of operation oitk, and pitk, respectively sitk, denote the processing
time per unit of item i, respectively the fixed setup time of item i. Moreover, let Yit

be the binary setup variable associated with the lot of item i that must be completed
in period t, i.e. Yit = 1 if Xit > 0 and is equal to 0 otherwise.

The following constraints ensure that the completion times respect the precedence
relations given by the item routes and the machine sequences.

Cit(k+1) ≥ Citk + pit(k+1)Xit + sit(k+1)Yit ∀i, t, k ≤ Ki − 1 (1)

Ci′t′k′ ≥ Citk + pi′t′k′Xi′t′ + si′t′k′Yi′t′ ∀i, i′, t, t′, k, k′ where (oitk, oi′t′k′) ∈ S
(2)

The feasibility of a plan is given, if the last operation in the item route finishes in
the respective period, i.e.,

t−1∑

l=1

capal ≤ CitKi
≤

t∑

l=1

capal ∀i, t (3)

Note that the processing of lot Xit can start before period t, i.e. operations oitk such
that k < Ki can start before period t.

2 2-SCH for CLSP with job-shop scheduling con-

straints

The 2-step construction heuristic (2-SCH) is a greedy construction heuristic originally 
developed for a single-level multi-item capacitated lot-sizing problem (CLSP). Re-
gardless of the application, the general framework of the method remains unchanged.
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2-SCH transforms the original problem into two subproblems:

1. Demand integration subproblem, where a single demand element, i.e., a demand
for a specific item and a specific period, must be integrated into an existing
partial production plan PP n = {Xn

it, Y
n
it , I

n
it, Schedule} consisting of lot sizes,

auxiliary decision variables for setups and inventory levels, and the correspond-
ing schedule at minimal cost. 2-SCH solves this subproblem approximately by
a case-based heuristic.

2. Demand sorting subproblem. Here the demand elements are sorted before being
added step-by-step to the production plan by solving the previous subproblem.
This is a sequencing problem with an implicit, complex objective function, where
there is no direct mapping between similar sequences and similar costs. In 2-
SCH, it is solved by a simple technique like static sorting rules.

The main adjustment to 2-SCH in the context of integrated lot-sizing and schedul-
ing is the estimation of available capacity. Another substantial change is the replace-
ment of the notion of overtime by the notion of tardiness. Finally, even though the lot
sizing part of the problem remains in the discretized time horizon, the scheduling part
lies in the domain of continuous time (capacity). This makes it necessary to simulate
the decisions when several periods must be considered to allocate the production for
one demand, i.e. when splitting a lot.

3 Capacity estimation

Available capacity needs to be assessed in order to determine the production quantity
that can be produced without violating the capacity constraints. We consider different
ways to compute the feasible production quantity as shown further.

Simple formula. The first strategy relies on the approach presented in Gomez Ur-
rutia (2014) and used in Wolosewicz et al. (2015), that allows to determine the quan-
tity of item i that can be produced in period t as Qit = mink=1,...K Qmax

itk , where
Qmax

itk is the maximal quantity that can be produced by operations up to the kth

operation in the route with available capacity using the slack time of operations.

Qmax
itk =

slackitk−stotalik ·(1−Y n−1
it )

ptotalik
, where the total setup time stotalik and the total process-

ing time ptotalik of operations in the route up to position k, and the existing slack of
operation oitk, slackitk, is only reduced by the total setup time if there is no lot for
item i in period t (i.e. Y n−1

it = 0). This is a pessimistic estimate, which gives only a
lower bound on the possible feasible amount that could be produced without violating 
capacity.

Improved formulas. In another strategy, we consider a so-called additional slack 
that can be used for production and setup in operation oitk′ without postponing the
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start of operation oitk, if oitk′ precedes oitk in an item route and slackitk′ > slackitk.
The additional slack can be calculated either by an exact algorithm that identifies
the longest path from oitk′ to oitk and its length (addSlacke

k′k), or by a conservative
formula that is an approximation (addSlackc

k′k = max(0; slackitk′ − slackitk)).
By accounting for the additional slack between all pairs of predecessors-successors

in the item route, we can obtain an improved lower bound on the feasible production
quantity.

Simulation. The last strategy allows to determine the accurate quantity that
could be produced by iterative simulation. This simulation is a loop, where the
quantity calculated by one of the strategies described above is added to the production
plan and then the formula is applied again. The loop terminates when the calculated
quantity is zero, i.e. there is no more available capacity. Such an iterative simulation
might be time-consuming, although the number of iterations is expected to be reduced
with the improved formula. Runtime could be managed by termination criteria such
as stopping after a predefined number of iterations or when the calculated maximal
quantity is below some threshold.

Table 1 reports the normalized capacity estimates (factors), defined as ratio of the
amount obtained by a strategy to the amount obtained by simulation. We distinguish
between the cases, in which capacity is estimated when an existing lot should be
extended, and those, when a new lot should be created.

Average factor (∗∗∗ − p ≤ 0.001)
Extend existing lot Create new lot Overall

Simple formula 0.54*** 0.49*** 0.51***

Improved formula (addSlackc) 0.58*** 0.54*** 0.56***

Improved formula (addSlacke) 0.59*** 0.55*** 0.57***

Simulation (benchmark) 1.00 1.00 1.00

Table 1: Difference in capacity estimation across all strategies.
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Abstract

In this study, we focus on a single-machine single-level lot-sizing and schedul-
ing problem with sequence-dependent setup costs. The problem is essential for 
production planning due to its effect o n o verall e fficiency. To find  efficient 
solutions, we develop a decomposition-based exact solution approach. Using 
this approach, we decompose the problem and use the integer L-shaped cuts 
to reach exact solutions. In the decomposed model, our master problem deter-
mines which products are produced in which period and in what quantity. On 
the other hand, our subproblem determines the sequence of production that is 
decided in the master problem. We are using the integer L-shaped cuts since 
our subproblem has binary variables. However, the integer L-shaped cuts are 
weak in their basic version. Therefore, we perform improvements on the basic 
model. We start by strengthening the cuts by calculating better lower bounds 
and through lifting. Afterwards, we disaggregate the cuts to develop another 
set of cutting planes. Our preliminary studies show that the algorithm spends 
most of its time solving the subproblem. Considering this, we introduce a dy-
namic programming-based algorithm to efficiently so lve ou r su bproblem. We 
make our computational tests on a benchmark dataset to compare the effi-
cacy of the developed algorithm and the improvements. The results show that 
our decomposition-based exact solution approach outperforms exact solution 
approaches in the literature.
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1 Introduction
Lot-sizing and scheduling problems are one of the well-known NP-hard problems in 
the literature [2]. The problem considers two of the well-studied problems, called the 
lot-sizing problem and the scheduling problem, simultaneously. To achieve effective 
and optimal production plans, making these decisions simultaneously is critical. Solv-
ing this problem optimally provides a balance between customer demand and costs 
[10]. By deciding the lot sizes, customer demands are satisfied while minimizing the 
production-related costs. Simultaneously, sequence decisions of the production lots 
are made to minimize the total setup cost.

In the literature, the lot-sizing and scheduling decisions are made hierarchically 
in many production processes [8]. However, there are also many studies that rec-
ognize the importance of making lot-sizing and scheduling decisions simultaneously. 
Therefore, several models and solution methods have been developed to solve this 
problem efficiently [2 ]. Th e Ge neral Lo t-Sizing an d Sc heduling Pr oblem (GLSP) 
uses macro and micro periods to address the impracticality of using smaller subpe-
riods [4]. The problem is called “general” since it can be adapted to other problem 
variants. Therefore, GLSP has been studied more than other variants of the problem 
in the literature.

GLSP is well-studied in the literature. However, most of the studies work on meta 
or matheuristics [2]. To the best of our knowledge, there is no exact solution method 
other than the methods that use MIP formulations that are solved using commercial 
solvers.

2 Problem Description and Solution Method
In this study, we consider a single-machine, single-level lot-sizing and scheduling 
problem with sequence-dependent setup costs. The problem can be formalized using 
the GLSP model proposed by [4]. This model is the basic formulation for GLSP, 
but there are other formulations that are improved versions of the basic model. Most 
of these formulations are classified i n [ 5]. T he a uthors e mphasize t hat b oth the 
network-flow reformulation of GLSP (GLSPNF) and the facility-location reformulation 
proposed by [1] (GLSPCC) provide better results.

We decompose the problem into two phases. In the first phase (master problem), 
lot-sizing decisions are made to minimize the inventory holding cost and estimated 
setup cost. In the second phase (subproblem), the sequences of the lots that are 
decided to be produced in the first p hase a re d ecided, a nd i t c an b e c onsidered as 
a single-machine scheduling problem with sequence-dependent setup times, release 
dates, and due dates. The subproblem can be formally defined a s i n t he [ 3]. By 
decomposing the problem, we significantly d ecrease t he number o f variables i n the 
master problem by eliminating micro-periods. The complexity of our master problem 
is O(|P ||T |), while the basic model is O(|P |2|T |). As can be easily observed, our
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subproblem has binary integer variables. Therefore, basic decomposition approaches 
(like Benders decomposition) cannot be used. Here, we adapt the integer L-shaped 
method proposed by [9] for two-stage stochastic programming integer programs. 
Using this method, we can drive our optimality cuts.

2.1 Algorithmic Improvements
Since our preliminary studies show that the basic algorithm is not effective for medium 
and large-sized instances, we perform improvements to the algorithm. We started 
with cut lifting by observation on the setup costs, which have a triangular property; 
therefore, it cannot be decreased by adding new productions. Using this observation, 
we reformulate the L-shaped cuts and prove that they are valid and stronger than 
the basic version of the cuts for triangular setup instances.

Another observation on integer L-shaped cuts is the impact of the lower bound 
value for estimated setup cost on its performance. To increase the performance of 
the cuts, we calculate two types of lower bounds: Global Lower Bound, which is the 
minimum setup cost of all products that have a demand if they are produced in only 
one period, and Local Lower Bound, which is calculated according to the feasible 
solution set of each iteration.

Afterwards, we disaggregate our cuts for each period and between periods to pro-
vide stronger cuts. To generate these cuts, we need an efficient wa y to  calculate 
a lower bound on the setup cost for each period. We use a dynamic programming 
algorithm (MinSetup) that recursively computes the minimum setup cost of each iter-
ation to calculate lower bounds. We extend this algorithm to calculate the minimum 
setup cost of the whole sequence. The extended version recursively divides the whole 
sequence and solves the left and right parts separately with fixed starting and ending 
products. It continues to do that until reaching a single period, then it uses the 
algorithm MinSetup.

3 Computational Study
To test the effectiveness o f o ur d ecomposition a lgorithm ( DA), w e u se benchmark 
instances from [7] and compare it with other exact solution approaches developed for 
GLSP. We also test the performance of the algorithmic improvements by comparing 
the basic DA with its improved versions. We use a subset of the benchmark instances 
that includes: |P | ∈ {3, 4, 5, 10, 15}, |T | ∈ {3, 4, 5}, Cap ∈ {0.6, 0.8}, CapV ar ∈ 
{0.5}, and CF ∈ {50, 100}. We made our computational study using the IBM CPLEX 
22.1.1 (64-bit) solver on C++ with a time limit of 600 seconds. We worked on a server 
with an Intel Xeon Silver 4214R 2.4 GHz CPU, 64 GB RAM, running Windows Server 
2019. All data and source code are accessible at [6].

We start the comparison with the basic version of our DA and three MIP formu-
lations in the literature. The results show that MIP models and DA can optimally 
solve small-sized instances. For larger-sized instances, the performance of all ap-
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proaches decreases. However, GLSPNF has the best average solution time for small 
and medium-sized instances. For large-sized instances, GLSPCC has better perfor-
mance, but it has a problem in producing feasible solutions for the largest sizes. 
Here, DA can achieve the best solutions among them.

We test the performance of our improvements in three phases. First, we focus on 
the impact of cut lifting and the lower bounds. Second, we also use disaggregated 
cuts. Finally, we use the dynamic programming approach to solve our subproblem. 
According to the results of the first p hase, c ut-lifting and l ower-bound calculations 
significantly improved the performance of the a lgorithm. The number of cuts added 
to the MP is decreased, and the solution time and quality improved for all instances. 
Now the algorithm can solve most of the medium-sized instances to optimality. In the 
second phase, we can solve all medium-sized instances to optimality. For small-sized 
instances, solution times are increased, and for large-sized instances, optimality gaps 
are decreased. Finally, we obtain better solution times and optimality gaps for all 
instances when we use the dynamic programming approach to solve our subproblem.

At the end, we make a comparison with the best version of our algorithm and 
MIP formulations. For small and medium-sized instances, GLSPNF, GLSPCC, and 
our algorithm can find optimum solutions, but our algorithm has better solution times. 
For large-sized instances, our algorithm can find solutions with lower optimality gaps. 
We also investigate the impact of the proportion of the setup cost within the total cost 
on MIP formulations and our algorithm. Results show that when the proportion of the 
setup cost decreases, the performance of the solution approaches increases. However, 
our algorithm is affected more by t his change, a nd a  much g reater improvement in 
solution times and quality is observed compared to other MIP formulations.

4 Conclusion
We study a single-machine, single-level integrated lot-sizing and scheduling problem 
with sequence-dependent setup costs. To efficiently so lve th is pr oblem, we  propose 
a decomposition-based exact solution approach. Since our subproblem has binary 
integer variables, we use the integer L-shaped-based cutting plane algorithm to solve 
the decomposed model. We also perform improvements on the algorithm by lifting 
the cuts, calculating better lower bounds, disaggregating the cuts, and developing 
a dynamic programming-based approach to solve the subproblem. We use a well-
known benchmark dataset to test the performance of the algorithm. The results 
show that improvements significantly a ffect th e pe rformance of  th e al gorithm, and 
the best version of our algorithm outperforms other exact solution approaches in the 
literature. Effective heuristics can b e used to tackle more complex cases as a  future 
research area. Adding stochastic demand structures to the problem is an additional 
approach that could be taken.
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1 Problem description and related works

The usual solution approach to solve production and scheduling problems involves two 
sequential optimization problems. First, a lot sizing problem is solved to determine 
a production plan; for each time period of a planning horizon and for each product, 
a production quantity (a lot) is decided. The objective is to satisfy the demands 
occurring over the horizon while optimizing the inventory levels, i.e., levels which 
comply with both safety stocks and maximum inventory levels. Then, a detailed 
scheduling problem is solved where lots, often called jobs, are scheduled on a set of 
parallel machines to minimize one or several criteria. Solving sequentially lot sizing 
and scheduling problems often results in inconsistencies: In the final s chedule, jobs 
may not be scheduled within the time period assigned to the corresponding lots in 
the lot sizing problem. The demands are satisfied at due dates occurring during the 
time horizon which results in sub-optimal inventory levels. One way to limit these 
inconsistencies is to define and solve integrated lot s izing and scheduling problems.

Integrated lot sizing and scheduling problems have been reviewed and classified 
in [2], where a generalization of simultaneous lot sizing and scheduling is introduced. 
An integrated lot sizing and job-shop scheduling problem is addressed in [3] and [4], 
using approaches that solve a lot sizing problem for a fixed sequence of operations on
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the machines. In contrast to the literature, which relies on discrete time periods, we
consider in the present work a continuous time horizon.

This work studies a multi-item capacitated lot sizing problem with fixed sequences
on parallel machines. As an input to this problem, we assume that we have a reference
schedule, obtained for instance by applying the sequential lot sizing and scheduling
approach mentioned above. This reference schedule is used to derive information for
our problem, namely the sequences of jobs on each machine and for each item and
the initial production quantities (lot sizes). The aim is to schedule the jobs, i.e decide
the start and completion times of each job as well as their associated production
quantities in order to minimize the inventory costs, which include the violation cost
of the maximum inventory levels, the backlog cost and the violation cost of the safety
stocks. A first version of this work has been presented in [1], which is extended
here by precisely evaluating the inventory levels and developing an iterative solution
approach. More specifically, for each kind of inventory cost, the total costis the sum
of the costs related to the product inventory levels measured at different times: The
start and completion times of jobs as well as the end of the scheduling horizon.

This paper describes the mathematical model of the Capacitated Lot Sizing Prob-
lem with Fixed Sequences, denoted (CLSPFS), and presents a solution approach and
numerical results for industrial instances.

2 Modeling the Capacitated Lot Sizing Problem

with Fixed Sequences (CSLPFS)

The (CLSPFS) considers a continuous planning horizon, where a set of products
(items) I are produced on a set of parallel identical machines M. Each product
(item) is associated to one or several jobs in a set of jobs J . Each product i ∈ I
is characterized by a maximum inventory level, a safety stock and backlog costs. In
addition, for each product, demand quantities must be satisfied at various due dates
in the planning horizon. From such a demand distribution, we define the accumulated
demand Di(t) of product i at time t, which is a piecewise constant function of time.
Each job j ∈ J is assigned to a machine, based on the reference schedule. Job j has
a unitary processing time pj and requires a setup time sj′j which depends on the job
j′ performed right before j.

Based on the reference schedule, we can define, for each machine m ∈ M, SM
m

the fixed sequence of jobs on machine m , i .e., the order in which the jobs assigned to 
machine m are executed. We can also use the reference schedule to define, f or each 
product i ∈ I, Si

P the fixed sequence of jobs relative to product i, which specifies the 
order in which the jobs of i are completed on the different machines.

The completion time of each job j is associated with variable Cj and the produc-
tion quantity of j with variable Xj . Given the fixed sequences of jobs per product,
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we can also define the accumulated production variable Qj for each job j. Finally,
we introduce inventory variables which are used in the objective function to evaluate
the inventory costs. Specifically, for each product i ∈ I, we consider three inventory
levels: (1) At the start times of the jobs producing i (Istartij )j, (2) At their completion
times (Iendij )j, and (3) At the end of the horizon Iif . Ideally, we would rather consider
the inventory levels at the demand due dates rather than at the start times of the
jobs, as demand due dates correspond to inventory level changes. However, modeling
these levels adds too much complexity to the problem. This is why they are estimated
by considering inventories at the start time of jobs.

The constraints of the (CLSPFS) include precedence constraints for the fixed
sequences per machine and per product, and the modeling of the accumulated pro-
duction quantities and accumulated demands. In addition, Constraints (1), (2) and
(3) define the inventory levels of job j of product i using the initial inventory Ii0.

Iendij = Ii0 +Qj −Di(Cj) ∀i ∈ I,∀j ∈ J P
i (1)

Istartij = Ii0 +Qj −Xj −Di(Cj − pjXj) ∀i ∈ I,∀j ∈ J P
i (2)

Iif = Ii0 +Qui
−Di(h) ∀i ∈ I (3)

Finally, constraints limiting the makespan of each machine to its value in the ref-
erence schedule are added. These constraints ensure that schedules with unnecessary 
long makespans and machine idle times are not determined.

Given the industrial priorities of the inventory violation costs and the goal of 
reducing machine idleness, a lexicographical objective function has been implemented 
with the following priorities: (1) The maximum inventory violation cost is minimized,
(2) The backlog cost is minimized, (3) The safety stock violation cost is minimized, 
and (4)The total idle time of machines is minimized.

3 Solution approach and numerical results
The (CLSPFS) is implemented as part of an iterative solution approach summarized 
in Figure 1. Given a reference schedule, a preprocessing step extracts the fixed se-
quences and the reference makespans. Then, the model is solved and a new schedule 
is obtained. If this schedule includes lot sizes that are equal to one unit, the corre-
sponding jobs are deleted. The process is repeated, i.e., the (CLSPFS) is solved, until 
no jobs are deleted from the schedule.

The proposed solution approach has been applied on 20 industrial instances vary-
ing in complexity and size. The quality of the obtained schedules is evaluated using 
two different c ost f unctions: ( 1) An “ optimized” c ost o btained by measuring the 
inventory levels at the start and completion times of jobs as well as at the end of the 
horizon, and (2) A “post-processing” cost obtained by measuring the quantities in
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Figure 1: Iterative solution approach

stock at at the completion times of jobs and at the due dates of demands as well as
at the end of the horizon.

The numerical results in Table 1 show that there is a significant gap between
the “optimized” inventory costs and the “post-processing” inventory costs, in par-
ticular the backlog and safety stock violation costs. Note that the first iteration of
the solution approach improves all costs except the backlog costs. However, at the
final iteration, all costs are reduced. Also, the production quantities increase when
optimizing the inventory levels.

Cost type Reference First iteration Final iteration
schedule

Maximum inventory
violation cost (Prio. 1)

Optimized 22,997,162 15,799,411 (-31.3%) 15,815,7031 (-31.2%)
Post Processing 35,506,642 18,464,980 (-48.0%) 18,525,103 (-47.8%)

Backlog cost (Prio. 2)
Optimized 4,738 6,060 (27.9%) 4,579 (-3.4%)
Post Processing 47,636 52,161 (9.5%) 42,445 (-10.9%)

Safety stock violation
cost (Prio. 3)

Optimized 27,598,401 23,844,002 (-13.6%) 22,982,766 (-16.7%)
Post Processing 81,566,163 78,998,596 (-3.2%) 75,844,428 (-7.0%)

Average idle time (min) (Prio. 4) 11,846 8,831 (-25.5%) 6,930 (-41.5%)
Average machine makespan (min) 29,792 28,542 (-4.2%) 28,459 (-4.5%)
Production quantity 154,443 169,060 (9.5%) 171,995 (11.4%)
Deletable jobs 0% 11% 13%

Table 1: Numerical results
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Abstract

This study addresses the tactical planning problem for reverse flows of pre-
owned consumer electronics under uncertain returns. Motivated by industrial
practice at Recommerce Group, the system combines product heterogeneity, a
two-stage refurbishment process with batch remanufacturing, FIFO rules, and
multi-class, multi-quality demand. The goal is to develop a planning model
that captures the stochastic quantity-quality mix of incoming products while
meeting demand expressed by product classes. The problem is formulated
as a two-stage stochastic mixed-integer linear program: first-stage decisions
route returns to refurbishment centers and launch remanufacturing batches,
whereas second-stage recourse flows satisfy demand across scenarios drawn from
probability distributions of return qualities. Sensitivity analysis highlights the
joint impact of batch size and demand granularity on profitability under return
variability.

1 Introduction

In the shift toward a circular economy, managing end-of-life product logistics presents 
significant c hallenges d ue t o t he c omplexity o f o perations l ike c ollection, storage, 
repair, and redistribution. This study builds on the earlier work of Schepler et al.
[1], who introduced a planning model for managing flows and resources involved
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in the collection, processing, refurbishment, and remanufacturing of used electronic 
products. Inspired by industrial Recommerce practices, the model accounts for several 
features: the diversity of collected product types, processing in refurbishment centers, 
the distinction between refurbishment and remanufacturing processes, and demand 
expressed by product classes and quality levels. The model is formulated as a mixed-
integer linear program and solved using a relax-and-fix heuristic.

The main limitation in the original formulation lies in its deterministic nature, 
whereas in practice, the quality of collected products is subject to uncertainty, driven 
by external factors such as the duration of the prior use. In this work, the initial 
model is extended by incorporating the products’ stochastic quality. The objective 
is to develop a stochastic planning model that accounts for variability in incoming 
flows while e nsuring d emand by p roduct c lass i s s atisfied. In  th e fo llowing section, 
the stochastic planning problem for trade-in, refurbishment, and remanufacturing of 
used electronics, hereafter referred to as SRRP, is described.

2 SRPP description
Used consumer electronics are collected through trade-in channels such as retail stores. 
These products are grouped into types (e.g., iPhone 7 32GB, various colors) and 
vary in quality, defined b y t heir f unctional a nd c osmetic c ondition. D evices like 
smartphones and tablets are classified into categories such as ‘Functional – Like new’, 
‘Damaged’, or ‘To recycle’. Other collection channels include international sourcing 
and B2B buyback, which allow ordering lots of products from companies. Compared 
to trade-in, these activities are secondary for Recommerce Group. While their flows 
can be represented in the model, they fall outside the scope of this study.

Collected products are first consolidated in stores, then sent to refurbishment cen-
ters where they are quickly inspected, cleaned, tested, and possibly lightly repaired. 
Processing follows the First In, First Out (FIFO) rule. Some products are later 
sent in batches to remanufacturing centers, where subcontractors impose batch size 
constraints. The remanufacturing process, including transport, takes from a few to 
several weeks.

Demand is specified by p roduct c lasses d efined by  th eir qu ality, wi th ea ch class 
grouping products sharing similar features (e.g., all variants of the iPhone 7). Prod-
ucts are sold through various channels. Fully functional, good-quality items are sold 
individually to consumers or retailers, while others are sold in batches. Some prod-
ucts are directed to refurbishers, whereas broken or low-demand items are sold to 
remanufacturers or international brokers for parts recovery or resale in international 
markets.

The objective is to maximize total profit, defined as  the difference between sales 
revenue and overall costs. Achieving this requires efficient logistics to minimize delays
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in collection, processing, and resale.

3 SRRP formulation

This section presents a general formulation of the SRRP. It specifically details the
notations, including decision variables and parameters, outlines the objective and
main constraints, and concludes with the formulation addressing the stochastic quality
of collected products.

3.1 Notations

The following sets are used to define the initial model: (i) I = {1, . . . , I}: set of
collection channels, (ii) M = {1, . . . , N}: set of product types, (iii) R = {1, . . . , R}:
set of refurbishment centers, (iv) T = {1, . . . , T}: discrete time horizon, and (v)
J = {1, . . . , J}: set of product qualities.

The decision variables of the SRRP include: (i) Xmirt ∈ R+: quantity of products
of type m collected at channel i during period t transferred to test center r, (ii)
Ymirtt′ ∈ R+: quantity of m arrived during t collected at channel i and tested during
t
′
in r, (iii) I−mirtt′ ∈ R+: inventory level of untestedm collected at channel i during t in

r at the end of t
′
, (iv) Wmjt ∈ R+: quantity of m in quality j sent to remanufacturing

at t, (v) Brtt′ ∈ {0, 1}: 1 if FIFO rule allows testing during t
′
in r products arrived

during t, 0 otherwise, (vi) Vt ∈ {0, 1}: 1 if a remanufacturing batch is sent during t,
0 otherwise, (vii) Ĩ+mjt ∈ R+: inventory level of tested m in quality j at the end of t

and, (viii) Z̃mjt ∈ R+: quantity of m in quality j sold during t. Note that the last
two variables are denoted with a tilde to indicate their dependence on the realization
of the stochastic quality of the products.

3.2 SRRP formulation: objective and constraints

The objective of the SRRP is to maximize the total profit while satisfying several
types of constraints. These include flow conservation across different stages such as
collection, pre-processing storage, post-processing storage, remanufacturing, and re-
sale. Additionally, the model accounts for the capacity limitations of test centers,
enforces batch remanufacturing operations, and ensures that product processing fol-
lows a First-In-First-Out (FIFO) order.

The problem is formulated as a two-stage stochastic mixed-integer linear program
to account for uncertainty in product quality:

• First-stage decisions (before the realization of product quality): includes vari-
ables Xmirt, Ymirtt′ , I

−
mirtt′ , Wmjt, Brtt′ and Vt.
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• Second-stage decisions (after the realization of product quality): includes vari-
ables Ĩ+mjt and Z̃mjt.

3.3 Stochastic quality of the collected products

As stated earlier, this study considers the quality of collected products as a stochas-
tic parameter. This assumption is motivated by practical considerations. In fact,
while an initial quality assessment is typically provided at the time of collection,
based on visual inspection or customer-declared condition, the actual quality is only
confirmed after testing is performed at refurbishment centers. This discrepancy be-
tween declared and actual quality introduces uncertainty regarding the distribution
of products across quality levels. In this context, the parameter τ̃mijt represents the
proportion of products of type m ∈ M and quality level j ∈ J that are collected
through channel i ∈ I during period t ∈ T . As the true quality of products is only
revealed after refurbishment, τ̃mijt is modeled as a random variable, capturing the
variability and unpredictability in product quality outcomes.

4 Conclusion

This study addresses the tactical planning problem for reverse flows of pre-owned
consumer electronics under uncertain return qualities. It extends the work of Schepler
et al. [1], and is inspired by real-world industrial practices at Recommerce Group.
A key contribution lies in the integration of stochastic product quality, motivated by
the practical observation that true quality is only revealed after diagnostic testing at
refurbishment centers. A scenario-based modeling approach is used to capture this
uncertainty. The problem is formulated as a two-stage stochastic mixed-integer linear
program: first-stage decisions involve routing returns to refurbishment centers and
launching remanufacturing batches, while second-stage recourse flows satisfy demand
across scenarios reflecting return quality variability. As a next step, the focus will be
on solving the stochastic model using advanced solution techniques such as Benders
decomposition.
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Abstract

We introduce the dynamic lot sizing model with remanufacturing and sepa-
rate setup cost for manufacturing and remanufacturing. The optimal policy for
the model when there is joint setup cost for manufacturing and remanufacturing
can be obtained in polynomial time [1], while when the setup cost for manufac-
turing and remanufacturing is separate, obtaining the optimal policy efficiently
is considerably more difficult. We polynomially reduced an instance of an NP-
complete problem, the Partition Problem, to an instance of our model with
separate setup cost for manufacturing and remanufacturing. This indicates
that inherently, finding an optimal policy for our model is computationally
difficult. By formulating our model as a dynamic program, we show that its
optimal policy can be found with pseudo polynomial time complexity. We then
propose a class of feasible policies for our model that satisfies two properties,
one being the zero-inventory property, and show that an optimal policy in this
class of policies can be found with polynomial time complexity. This is shown
through the dynamic program formulation to find the policy. Next, we investi-
gate the closeness of this policy to the optimal policy in terms of total system
cost and show theoretically that the policy can be close to optimal. We imple-
ment our dynamic programs to find the optimal policy and the feasible policy,
and present numerical results comparing the feasible policy with the optimal
policy on instances of the model.

Results presented are based on the submitted work [2].
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Abstract

The cutting process is present across many industrial sectors, yet remains
poorly optimized. Today, approximately 30% of raw material is discarded. This
waste, with both ecological and financial consequences, motivates our work: to
reduce unused material in industry while maintaining industrial viability. To
achieve this, we combine two classical operations research problems: the Cutting
Stock Problem (CSP) and the Lot Sizing Problem (LSP).

1 Industrial and Scientific Context

Cutting operations are widespread across various industrial sectors, yet they often re-
main under-optimized. As a result, nearly 30% of raw material is typically discarded, 
leading to significant environmental and financial re percussions. Driven by  these so-
cietal and operational challenges, this work aims to reduce industrial material waste 
while ensuring practical feasibility. To this end, we address a problem that integrates 
two classical operations research formulations: the Cutting Stock Problem (CSP) and 
the Lot Sizing Problem (LSP).
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This research is conducted within a CIFRE doctoral framework in collaboration 
with Reeverse Systems, a company specializing in software solutions for raw mate-
rial valorization. Our study is rooted in concrete industrial use cases provided by 
Reeverse’s clients.

In recent years, the classical CSP has evolved to include the notion of usable 
leftovers, formalized as the Cutting Stock Problem with Usable Leftovers (CSP-UL)
[1]. These models shift the focus from minimizing total waste to minimizing non-
reusable material, as outlined in [2]. In this context, some remnants from cutting 
operations are reclassified a s u sable o bjects a nd c an b e r eused i n c urrent o r future 
production.

We focus particularly on scenarios where cutting decisions are embedded within a 
broader production planning framework. This gives rise to the Integrated Lot Sizing 
and Cutting Stock Problem (LSP-CSP), surveyed comprehensively in [3]. Solving 
these problems jointly rather than sequentially better reflects i ndustrial constraints 
and yields solutions that are both feasible and cost-effective.

Further, combining both extensions—namely usable leftovers and integrated plan-
ning—leads to the LSP-CSP-UL model. While not the first attempt at such integra-
tion, the formulation proposed in [4] marks a significant step toward a  more general 
framework. However, this approach still exhibits limitations in both modeling and 
computational performance.

2 Modelling

We aim to extend this modeling framework by incorporating setup costs and smooth-
ing constraints for production planning. Moreover, the model is tailored to industri-
ally relevant scenarios: a 2D cutting stock problem involving irregular item shapes 
with free rotation.

The proposed model seeks to determine which cutting patterns to apply on which 
objects j ∈ J , across a discrete planning horizon T , to meet known demand. Specifi-
cally, we decide the number xt,j,k of pattern instances k ∈ K to execute on object j 
at time t, assuming the set of feasible patterns K is known in advance.

The MILP is composed of an objective function and of several constraints.
The objective function consists of the sum of raw material costs, storage costs 

(during the planning horizon and long-term) for both items and objects, setup costs, 
and production smoothing penalties. The function intends to guide us toward feasible 
solutions that minimize both production and raw material costs, not to perfectly 
represent real-world costs.

A first set of constraints represent the inventory level of items at each period in the 
planning horizon. These constraints guarantee that the demand is met, in different 
ways.
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• The items can already be in stock.

• The items can be produced internally. The number of manufactured items
are calculated as the product of the number of cuts and the number of items
produced per cut, summed over all possible cuts at this time that produce the
given item.

• The items can also be ”procured externally” i.e., purchased, when not produced
internally by the company. This procurement is a notional representation, as it
may simply account for a production shortage.

Stock management constraints apply to both items and raw material units (new 
or reused). The core aspect of the LSP-CSP-UL model lies in the dynamic inventory 
of usable leftovers: each cutting operation may produce new reusable objects, which 
in turn can be consumed in subsequent operations.

Thus, a second set of constraints models the stock level of objects, in a way specific 
to the LSP-CSP-UL framework. These raw materials are transformed into finished 
products. It governs the reintroduction in stock of usable leftover, generated during 
the cutting process.

We also integrate setup costs to generate industry-relevant production schedules. 
The objective is to balance fixed costs (setup) against variable costs (raw materials, 
storage, and operations).

The setup constraints on the cutting pattern and the objects determine whether 
the setup variables are active. These constraints govern the behaviour of the setup 
variables, which must activate when a type of object or cutting pattern is used at a 
given time t. Thus, whenever one of the xk variables becomes active, the correspond-
ing setup variable is also activated. Notice that this constraint weakens the linear 
programming relaxation of the model.

3 Solution Methods

To solve realistic problem instances, we developed two solution strategies. The first 
method operates on a pre-defined l ibrary o f industrial nesting p atterns. This allows 
us to assess the benefits o f p rocess o ptimization w ith m inimal o perational change. 
We employ basic matheuristics to reduce computation time, enabling fast feedback 
loops with industrial partners to refine the model and align with practical needs.

The second strategy aims to go beyond existing patterns by generating new ones 
via column generation. This is computationally challenging, especially in the context 
of our 2D variant of the CSP. Reaching convergence often requires thousands of 
patterns, and generating a high-quality, feasible pattern can take several seconds
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using state-of-the-art nesting software1.

4 Preliminary Results

The first solution approach has already been implemented in an industrial environ-
ment. It yields approximately a 4% reduction in raw material usage, with computa-
tion times under a minute for a one-month planning horizon involving 300 patterns,
50 items, and a similar number of objects. We expect to double this gain using the
second approach, albeit at a significantly higher computational cost.

5 Introduction
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Abstract

This study explores a robust optimization approach to capacitated lotsiz-
ing under inherent supply chain disruptions, including bursty demand patterns
and uncertain transition dynamics. An iterative adversarial framework as-
sesses worst-case scenarios, enhancing production planning resilience. Various
uncertainty representations are considered to model fluctuations and transi-
tions. The framework integrates a structured demand process and optimizes
decisions under uncertain conditions. Future research will refine uncertainty
modelling, incorporate advanced forecasting techniques, and improve compu-
tational efficiency. This work contributes to resilient supply chain management
by supporting adaptability in unpredictable environments.

1 Introduction

Supply chain disruptions are an unavoidable challenge in production planning. Un-
like external disasters, inherent disruptions arise from within the supply chain itself, 
such as bursty demand patterns and unpredictable variations. These uncertainties 
necessitate a robust decision-making framework that ensures operational resilience 
while optimising costs.

We define s upply chain r esilience a s t he a bility o f t he s upply chain t o p lan for, 
respond to and recover from disruptions in a timely and cost-effective manner [3].

38



There are various proactive and reactive resilience strategies [2], such as contract-
ing with back-up suppliers, using safety stocks, or employing flexible manufacturing
approaches, among others.

We explore different approaches to handling inherent supply chain disruptions. We
develop a novel state-based robust optimisation model designed to create production
plans that are resilient to plausible, high-impact adverse scenarios. A key objective is
to compare this model with a baseline approach that does not explicitly account for
inherent disruptions. We provide brief remarks for the problem on hand next, and
discuss further details including preliminary results in the talk.

2 Deterministic Lot-Sizing Model

To benchmark our approach, we first consider a baseline deterministic model with
backlogging and constant capacities (Formulation 1):

Minimize
T∑

t=1

pXt +
T∑

t=1

qYt +
T∑

t=1

hSt +
T∑

t=1

bRt [1],

Subject to: St−1 −Rt−1 +Xt = Dt + St −Rt ∀t [1a],

Xt ≤ CYt ∀t [1b],

Xt, Rt, St ∈ RN
+ ∀t [1c],

Yt ∈ {0, 1}n ∀t [1d].

The objective [1] minimizes production, setup, inventory, and backlog costs. Con-
straints [1a] ensure flow balance, [1b] enforce capacity limitations, and [1c] and [1d]
impose nonnegativity and integrality. Introducing a new variable Ht to represent the
overall holding and backlog costs simplifies the structure (Formulation 2):

Minimize
T∑

t=1

pXt +
T∑

t=1

qYt +
T∑

t=1

Ht [2],

Subject to: h

t∑

i=1

(Xi −Di) ≤ Ht ∀t [2a],

−b

t∑

i=1

(Xi −Di) ≤ Ht ∀t [2b],

Xt ≤ CYt ∀t [2c],

Xt, Ht ∈ RN
+ ∀t [2d],

Yt ∈ {0, 1}n ∀t [2e].
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Here, constraints [2a] and [2b] replace the flow balance constraints [1a], ensuring
Ht captures both holding and backlog costs. This reformulation reduces variables
and constraints, enhancing efficiency but at the cost of direct inventory and backlog
interpretation.

3 Robust Lot-Sizing Model

To handle uncertainty, we introduce a two-stage robust optimization framework that
iteratively solves two interconnected problems, a Master Problem (MP) and an Ad-
versarial Problem (AP), broadly in a similar fashion as in [1].

3.1 Master Problem (MP)

The MP (Formulation 3) determines a single, robust production plan that performs
well against the set S of known challenging scenarios (ds, F s) identified so far. Specif-
ically, it minimizes Θ, which represents the maximum possible total cost calculated
across all scenarios s ∈ S.

Minimize Θ [3],

Subject to: Θ ≥
T∑

t=1

(ptXt + qtYt) +
T∑

t=1

Hs
t ∀s ∈ S [3a],

Invst =
t∑

i=1

Xi −
t∑

i=1

N∑

l=1

F s
ild

s
il ∀s ∈ S,∀t [3b],

Hs
t ≥ h.Invst ∀s ∈ S,∀t [3c],

Hs
t ≥ −b.Invst ∀s ∈ S,∀t [3d],

Xt ≤ CYt ∀t [3e],

Xt ≥ 0, Hs
t ≥ 0,Θ ≥ 0 ∀s ∈ S,∀t [3f ],

Yt ∈ {0, 1} ∀t [3g].

Constraint [3a] links the total cost of each scenario to the overall objective Θ. 
In [3b], Invts represents the net inventory at the end of period t under scenario s, 
calculated based on the production plan X and the specific demand sequence (ds, Fs) 
associated with scenario s. Constraints [3c] and [3d] ensure Ht

s captures the maximum 
of the holding and backlogging costs. By considering all known worst cases s ∈ S 
simultaneously, the MP seeks a production plan X resilient to a range of potential 
futures and provides a reliable lower bound (LB = Θ) on the true optimal robust 
cost.
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3.2 Adversarial Problem (AP)

Given a candidate production plan X from the MP, the AP seeks to find the single
most challenging scenario that maximises the resulting sum of holding and linear
backlog costs by choosing:

1. A specific state path, F , which is a sequence of active states over the time
horizon.

2. The realized transition probabilities, P̃ll′ , from within their defined uncertainty
set.

3. The realized demand values, d̃tl, for each state and period from within their
uncertainty set.

The crucial constraint is that the chosen path F must be plausible, i.e., its total
probability must be greater than or equal to a threshold α. The worst-case scenario
found by the AP is then added to the set of scenarios considered by the Master
Problem in the next iteration. This iterative process refines the production plan until
the gap between the lower and upper bounds converges.

We will discuss further technical details of AP (including its full formulation) in
the talk, along with some observations and insights from our preliminary tests. We
will also explore several research perspectives going forward.
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Abstract

We consider an integrated lot-sizing and assortment planning problem with 
stock-out based substitution. In each period, an assortment of items is proposed 
to a set of customers. Each customer has a preference list of items and chooses 
its preferred item among the set of available ones. We suppose that the market 
size and the rates at which the items are depleted are known at each period, 
but the customer types and the order in which each customer arrives at the 
shop is unknown. Each item is sold at a certain price, and our objective is to 
maximize the profit of each item with respect to the standard costs in lot-sizing, 
including production, setup, and holding costs. We propose a MILP that solves 
the deterministic case where each customer type arrives homogeneously in the 
store. We also investigate the integration of backlog in the model, corresponding 
to the case where some customer type has a probability of coming back to the 
store in the next period.
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1 Introduction

Existing lot-sizing models allow some items to be substituted to satisfy the demand. 
However, these models assume that the retailer makes the substitution choices to offer 
to customers, which represents an optimistic scenario. Such substitutions usually 
involve upgrades, i.e. replacing a lower-quality product with a higher-quality one 
[4]. In practice, demand in retail stores is strongly influenced by t he a ssortment of 
items proposed in the store, and customers only consider substituting their preferred 
product when it is out of stock. This type of substitution is known as stock-out-
based substitution [3], i.e., customers base their choice on the assortment available 
at the time they visit the store. To address this, some studies incorporate customer 
choice behavior in response to varying product assortments [1, 2]. However, these 
approaches often rely on logit-based models to represent the demand, which leads to 
nonlinear formulations that are difficult to  solve.

We investigate a lot-sizing problem with customer-driven demand substitution, 
where the substituted items are chosen by the customer based on the item availabil-
ity. The most closely related work is by [5], which considered a single-period assort-
ment planning problem under customer-driven demand substitution and formulated 
a mixed-integer linear program (MILP) to solve the problem. However, their model 
is limited to a special scenario of demand substitution and does not fully capture the 
substitution behavior of individual customer. In contrast, our approach focuses on 
the customer substitutions in response to stock-outs, offering a  more comprehensive 
approach to substitution.

2 Problem description
We propose a model that maximizes the profit of a  multi-item capacitated lot-sizing 
problem with stock-out based substitution. In this problem, a set of N items is con-
sidered and sold to the customers through a dedicated shelf in a store. We assume, 
without loss of generality, that item 0 corresponds to the no-purchase option. In each 
period t ∈ {1, . . . , T }, a market size of τt customers come to the store. Each cus-
tomer is defined by a  customer type, r epresented by a  s equence o f i tems ordered by 
preference. A customer visiting the store selects the most preferred product among 
those available in assortment A ⊆ {1, . . . , N}, or leaves the store without purchas-
ing if they could not find a  s uitable p roduct. We a ssume t hat t he customers arrive 
homogeneously at the store, and each item is depleted with respect to an assortment 
depletion matrix M , where each row represents the assortment proposed to the cus-
tomer and each column gives the depletion {rate of the}corresponding product. Given 
assortment Ai ⊆ {1, . . . , N} index by i ∈ 1, . . . , 2N , the customers deplete each 
product j ∈ Ai at rate Mij until a stock-out occurs for one item k ∈ Ai. The process
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is then repeated with assortment Ai \ {k}, and terminates when there is either no
customer or no more items in the assortment. The goal of this problem is to find the
quantities of items to produce, to stock, and to put on the shelf, while maximizing
the difference between the profit of each item and the production, setup, and holding
costs. We assume that the substitution cost is negligible.

We provide a small example to better understand the problem. Suppose we have a
set of three customer types C = {(1, 2, 3, 0), (1, 2, 0), (3, 1, 2, 0)} with the given arrival
probabilities:

P[c = (1, 2, 3, 0)] = 0.45 P[c = (2, 1, 3, 0)] = 0.45 P[c = (3, 1, 2, 0)] = 0.1

For example, for a market size of τt = 100 in period t ∈ {1, . . . , T}, a demand of
45 is associated with customer type (1, 2, 3, 0).

Assortment Depletion rate
Ak 1 2 3 0

{1, 2, 3} 0.45 0.45 0.1 0.0
{1, 2} 0.55 0.45 0.0 0.0
{1, 3} 0.9 0.0 0.1 0.0
{2, 3} 0.0 0.9 0.1 0.0
{1} 1.0 0.0 0.0 0.0
{2} 0.0 1.0 0.0 0.0
{3} 0.0 0.0 0.55 0.45
{} 0.0 0.0 0.0 1.0

Table 1: Depletion of items for each assortment

Table 1 gives the assortment depletion of each item for the above example. In this 
table, we observe that item 3 is depleted at a much higher rate only when items 1 
and 2 are unavailable. Thus, by only considering the primary demand of the product, 
item 3 is unlikely to be produced in large quantities. However, producing item 3 may 
become advantageous under certain conditions, such as limited production capacities 
for each item.

To solve this problem, we propose an MILP that uses the assortment depletion to 
compute the substitution behavior of each customer.

3 Preliminary experiments

In this section, we compare our approach, denoted as LS-SBS, with standard ca-
pacitated lot-sizing formulations on the instance proposed in Section 2. For this
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comparison, we consider a capacitated lot-sizing problem, denoted as CLSP, where
each item j has a demand equal to the number of customers with item j as their first
choice. For each model, the quantities produced at each period are proposed to the
customers, and we simulate the depletion of each item by homogeneously depleting
the products with respect to the preference of customers.

Model T = 5 T = 10 T = 20
CLSP 8091.6 21616.5 42470.8
LS-SBS 9226.2 23591.9 46267.5

Table 2: Comparison of the average profit obtained by each model

Table 2 shows the average results of the two models on three instance types with
different horizon lengths. The LS-SBS model shows a higher profit compared to the
CLSP, which demonstrates the importance of considering the customer choice when
incorporating retail decisions into lot-sizing problems.

In future work, we aim to incorporate time-dependent decisions into the model.
One promising direction is to account for backlogging in the customer choice process.
Specifically, we consider scenarios where some customers may come back to the store
in a later period if they could not find a suitable substitute during their initial visit.
Another research avenue involves examining customer behavior in the context of
perishable products. For example, certain customers might opt not to purchase an
item if its expiration date is too close, and we plan to incorporate this preference into
future models.
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Abstract

Collaborative lot sizing usually relies on a centralized decision-maker to reap the
benefits of joint operations. While this often leads to optimal results, concerns
about transparency and dependency prevent agents from working together in
practice. We aim to explore an alternative approach to dezentralisation in lot
sizing using smart contract auctions. We develop and compare two models:
a centralized optimizer that achieves the best possible objective value and a
dezentralised mechanism, where agents submit self-generated bids. An off-chain
combinatorial algorithm determines the optimal allocation, and the results are
published on-chain via smart contracts to ensure transparency and auditability.
We also investigate the role of smart contracts in contracting for lot sizing.
Preliminary results suggest that while the decentralized model worsens the
objective value, increased incentives for collaboration can compensate for this
trade-off. Based on a computational study, the potential of smart contracts to
enable dynamic real-time pricing and enhance transparency is analyzed.

1 Introduction

In today’s globalised economy, the efficiency of  su pply ch ains is  pa ramount. Joint 
lot sizing – an operational strategy where multiple parties coordinate their inventory 
management, and production planning to reduce costs – allows for the achievement of 
the optimal result for everyone [Gansterer et al., 2021, Albrecht, 2010]. The agents 
are, however, reluctant to share the information that would make such a collaboration 
possible. The introduction of smart contracts raises the question of their usability 
in collaborative lot sizing. Smart contracts provide a solid foundation for privacy 
and fairness by minimising the need for intermediaries in digital transactions. This
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research investigates the feasibility of using smart contract auctions in decentralized 
collaborative lot sizing, evaluating whether efficiency can be  maintained de spite de-
centralization. We employ a mixed integer linear program (MILP) for the centralized 
model and develop an iterative bundled-cost hybrid smart contract framework for the 
decentralized approach. Computational experiments investigate the ”cost of decen-
tralization”, convergence speed, and transparency outcomes, providing insights for 
future theoretical advancements.

2 Problem Definition and Experimental Setup
We adopt a two-tiered method in our study. The first layer uses a  centralized model 
to create the best possible theoretical situation. The second layer shows the opposite: 
a new, privacy-protecting decentralized market mechanism. This method allows to 
directly assess the ”cost of decentralization”, which is the loss of efficiency that comes 
with getting benefits l ike p rivacy a nd t rust. We f ocus o n a  c apacitated l ot sizing 
problem involving several agents and periods. In this case, several production agents 
need to work together to meet a common outside demand for every period, where 
each of these agents has its own private information.

Firstly, we create a centralized lot sizing model (C-LS) as benchmark for the pro-
posed decentralized approach. This model depicts the theoretical ideal, wherein a 
singular, fully informed decision maker exists. The problem is put up as an MILP 
that minimizes total cost including setup, production, and holding cost, while also 
considering inventory balance equations and capacity limits. However, it is unlikely 
that it would be used in real life, as companies are very worried about transparency, 
dependency, and the possible loss of their competitive edge due to information reve-
lation.

Secondly, we propose a bundle-based incremental cost auction mechanism that 
allocates demand while preserving agent privacy. The mechanism operates iteratively, 
with agents submitting bids based on their marginal costs derived from solving local 
optimisation problems. Instead of allocating demand to each period separately, we 
group consecutive periods into ”bundles” to capture setup cost economies. A neutral 
auctioneer coordinates the process without accessing agents’ private cost data. Each 
agent’s subproblem is a capacitated multi-level lot sizing problem.

The algorithm for the decentralized system operates through three primary phases. 
First, during bid generation individual agents solve their local lot sizing problems and 
extract shadow prices from their demand constraints. Next, in the bundle allocation 
phase a neutral auctioneer allocates each bundle to the agent who has the lowest 
incremental cost. The entire procedure concludes with the convergence check, which 
terminates the process as soon as the allocations stabilise. While convergence is not 
theoretically guaranteed, the finite number of possible allocations and the monotonic
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improvement property ensure termination. In practice, all tested instances converged
within 50 iterations.

A purely on-chain implementation where the entire auction is executed on a public
blockchain is currently infeasible as the auctioneer has to solve the Winner Determi-
nation Problem (WDP), which is NP-hard. The computational complexity of this
task would lead to prohibitive transaction costs and unacceptable execution delays
on-chain. This practical limitation necessitates a hybrid architecture that separates
computationally intensive tasks from on-chain enforcement.

The workflow employs a multi-phase commit-reveal system to ensure fairness for
participants and to prevent issues such as bid-sniping. First, agents confirm their
bids function on the blockchain, where a security deposit in an escrow account is
kept. This step makes the bid legally binding and private. Once the bidding period
expires, agents submit their bid details. The smart contract checks this information
against the previous promise. After a successful revelation, the auctioneer picks the
winner off-chain by solving the WDP. After that, results are published and final prices
are send for clearing and allocating to the blockchain, where they will reside. Fur-
thermore, there’s a function to handle money transactions automatically, distributing
possible winnings and returning deposits to real agents.

3 Computational Results

The model is tested against an extensive set of instances, which contain small (s) and
medium (m) instances for 2 or 5 agents with different types of bills-of-materials.

The Price of Decentralization is computed as PoD = CostDA-LS−CostC-LS

CostC-LS
×100%. We

define CostDA-LS as the total cost under decentralized allocation and CostC-LS as the
optimal centralized cost.

Instance Category Price of Decentralization

s A2 BASE −9.54%
s A5 BASE −15.35%
m A2 BASE −7.43%
m A5 BASE −10.46%

Table 1: Relative increase in total cost under decentralized coordination (price of 
decentralization).

At first glance, the results seem to show a significant efficiency loss . However, this 
gap must be interpreted in light of the well-documented barriers to centralized plan-
ning. Our DA-LS mechanism directly tackles these difficulties by requiring agents to
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share only their incremental costs (bids) instead of their proprietary cost data. There-
fore, the ”price of decentralization” is not a weakness but a necessary investment for
creating a workable, privacy-respecting cooperative framework, which is a key goal
in the search for effective coordination mechanisms. Just like the centralized model,
based on the computations, the decentralized planning achieves the service level of
100%, while, if the agents planned separately, trying to cover the whole demand in all
instances, it would drop on average to 92%, in some cases lower than 85%. From com-
putational perspective, the convergence in the iterative algorithm is reached within
3.19 iterations on average. The bundle-based incremental cost mechanism, while not
strictly incentive-compatible, exhibits properties that discourage strategic manipu-
lation as an agent a is incrementally truthful if they report their true incremental
cost ICa(B) = ca(da + DB) − ca(da) for a bundle B. While the proposed mecha-
nism is not theoretically strategy-proof several integrated design features promote
truthful bidding by making strategic manipulation computationally intractable. The
complexity of the multi-period, multi-product problem itself makes it difficult for an
agent to calculate an optimal manipulation. The iterative nature of the auction and
the use of bundled periods create significant interdependencies. For example, setup
costs introduce ”complementarity effects”, which provide incentives for agents to win
consecutive periods. Furthermore, the system limits information revelation; agents
can only see the final allocation outcomes, not the specific bids submitted by their
competitors. This is enforced by the smart contract’s commit-reveal structure, which
locks in bids and prevents agents from adjusting their submissions after observing
competitor behaviour. Finally, the iterative process is robust enough to converge
toward a solution even if minor strategic misreporting occurs.

Comprehensive game-theoretic analyses and empirical testing of strategic be-
haviour remain important areas for future work. Our current results, however, demon-
strate the mechanism’s effectiveness under the assumption of truthful reporting, which
is reasonable given the complexity of profitable deviation in this setting.
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Abstract

Increasing awareness of sustainability and regulatory pressure drive the use
of product-specific returnable transport items (RTI) instead of disposable pack-
aging. However, little attention has been paid to decision support for the joint
optimization of economic production and order lot sizes, with the simultane-
ous calculation of RTI fleet sizes, considering different modes of ownership in a
multi-tier supply chain.
This research models a three-tier supply chain consisting of a component sup-
plier, a manufacturer, and a customer. The aim is to determine the joint eco-
nomic production and delivery lot sizes, while simultaneously determining the
required RTI fleet sizes for both the supplier’s and the manufacturer’s products,
considering different cost components for RTI (rent, investment, or a combina-
tion thereof). In addition, capacity constraints must be respected. To achieve
these objectives, a MINLP is developed and solved. Numerical examples are
provided to demonstrate the model’s behaviour.

1 Introduction

Driven by sustainability considerations and also called for by regulations such as 
the EU’s Packaging and Packaging Waste Regulation [1], companies should integrate 
reusable packaging into their logistics processes [6]. In this study, we focus on product-
specific r eturnable t ransport i tems ( RTIs). The costs o f acquiring them r esult from 
either a purchase (investment), continued rental charges, or a combination of both. 
Figure 1 shows an example of an RTI for which a combination of rental and investment 
costs is incurred.
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Figure 1: Example of product-specific RTI with combined cost t ypes: rent for outer 
box and investment for tray with foam rails (photo taken by the author).

The responsible company within a supply chain has to determine and procure the 
amount of packaging required in the system, which is referred to as the fleet size. 
Product-specific RTIs are commonly purchased for the whole production l ife cycle of 
the respective product. The fleet size depends on the policy for returning empty RTI, 
expected fleet shrinkage, and the production lot s ize. Commonly, the production lot 
size is defined, and subsequently, the fleet size is de termined. However, if the fleet size 
is insufficient, the planned production lot sizes cannot be re alized. On the other hand, 
excess RTIs are inefficient. Th erefore, th e fle et siz e sho uld be as sma ll as possible. 
Furthermore, it can be more cost-effective to determine production lot s ize and fleet 
size simultaneously [3].

On the other hand, as shown by multiple authors, coordinating lot sizing decisions 
in supply chains increases competitiveness. However, the challenge of coordinating 
lot sizes in a supply chain while determining the RTI fleet s izes s imultaneously has 
received little attention in the literature [4]. Therefore, we model a multi-tier sup-
ply chain in a deterministic setting to simultaneously determine the cost-effective 
production and delivery lot sizes, as well as the RTI fleet sizes, while considering dif-
ferent return policies and expected shrinkage of fleets. For demonstration purposes, 
this model is then applied to a three-tier supply chain, and the resulting MINLP is 
solved for several real-life instances. The results confirm expectations for better cost 
performance when coordinating fleet and lot s ize within supply chains.

2 The model

We base our model on the MLCLSP [5] with a finite p lanning h orizon T .  The ob-
jective is to minimize the total lot-dependent costs, which consist of setup and order 
costs, holding costs, transportation costs, and costs for RTIs. Additional loop days

51



and processing steps, such as cleaning, are not considered. We further assume the fol-
lowing: a linear product structure, constant demand per period at the final customer;
no backlog or repacking is allowed; lead times and return quantities are determinis-
tic; production setup always occurs at the beginning of a period; open lot sizing; and
all-parts-available policy.

The decision variables are the production lot sizes qi, the production schedule
γi,t, the delivery lot sizes and schedules qdeli,t , the return policies εi and the RTI fleet
sizes ρi. Figure 2 illustrates an exemplary, three-tier supply chain, highlighting the
decision variables.

...   A B    ...

RTI a RTI b

supplier S manufacturer M customer C

lot size,

return policy

delivery lot size 
and schedule 

schedule

fleet size

delivery schedule 

full RTI 

empty RTI

A   B
lot size,
schedule

fleet size

return policy

Figure 2: Example of a three-stage supply chain, which also illustrates the decision 
variables

Further, production and storage capacity (separately for full and empty RTIs) 
need to be observed, and stock levels need to be non-negative (for products and for 
RTIs). Furthermore, no parallel production is allowed, and component stock must 
be sufficient before starting a production or der. Additionally, we  model the expected 
fleet shrinkage as a  l inear function of the respective lot sizes.

3 First results
This model is a MINLP with a non-convex objective function. We employ fix-and-
optimize heuristics, combined with decomposition strategies, approximations, and 
linearization, to solve various instances from practice and conduct the first sensitivity 
analyses using the commercial solver Baron [7].

The initial results indicate that coordinated lot and fleet s izes w ithin a  supply 
chain increase cost efficiency, th ereby co nfirming the  exp ectations. How ever, these 
results also suggest that this effect weakens if the RTI used between the manufacturer
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and the customer is more expensive than the RTI used between the supplier and the
manufacturer. They also demonstrate that the choice of return policy can have a
significant impact on the cost situation. Therefore, supply chain managers should also
consider optimizing the configuration of RTI systems when determining production
lot and RTI fleet sizes.
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Abstract

We consider the trade-off between costs and carbon emissions of the follow-
ing lot sizing decision. A company orders at regular intervals from a supplier,
and the ordered goods are transported by truck. The size of the order deter-
mines the degree of utilization of the truck as well as the amount of inventory
space needed, both of which drive carbon emissions and costs. We conduct a
survey of empirical studies in order to establish the possible marginal emissions
from holding inventory and performing a shipment with a truck.

In our experiments, we vary relevant factors related to the logistics situation,
such as product characteristics, logistics considerations, and different demand
scenarios. We measure the so-called efficient frontier, measured by all efficient
solutions obtained by the weighted method (meaning that each efficient solution
is optimal for some non-negative carbon cost value). The result is that it is often
costly to reduce carbon emissions from the cost optimal solution (compared
to carbon prices in the market), unless different vehicle types are available,
transportation costs are low, or demand fluctuates.

1 Introduction

Recently, there has been much attention in Operations Research and Operations Man-
agement on the minimization of carbon emissions due to logistics decisions. Road 
freight transportation is an important source of these emissions. As of 2016, road 
freight transportation contributes to 4.95% of greenhouse gas emissions in the Eu-
ropean Union and warehouses to 0.55%. Many initiatives are taken to reduce the 
environmental impact of transport, such as the Smartway initiative of the American 
Environmental Protection Agency (EPA) (also active in Canada) and the European 
transport initiatives such as the Transport and Environment initiative. These pro-
grams improve the environmental impact of transport through measurement and re-
porting of impacts and the dissemination of best practices (e.g., smart routing and
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economic driving). Furthermore, the European Union has further planned legislation 
in their European Green Deal, formalized in the Fit for 55 framework, which aims to 
reduce emissions by 55% up to 2035.

One way to reduce the transport emissions is to improve the utilization of a vehicle, 
since a fully loaded vehicle emits much less carbon per item or per ton than a poorly 
utilized vehicle. However, if one wishes to use well-utilized vehicles, it may result in 
low shipment frequencies and high inventory costs (and possibly high emissions from 
holding inventory). The trade-off between the potentially low carbon emissions from 
infrequent shipments versus the high inventory holding costs is relevant for a logistics 
provider who wishes to reduce carbon emissions.

An intuitive way of modeling this trade-off is using the Economic Order Quantity 
(EOQ) model. In this model, the decision is on how much and when to order. The 
EOQ model presumes a constant demand over an infinite time horizon and a  contin-
uous review setting, i.e., orders can be placed at any point in time. Many studies on 
EOQ models have considered the environmental impact in the form of carbon emis-
sions and included measures such as caps on the amount of carbon emitted and carbon 
taxes. However, the assumptions make EOQ models quite stylized, in particular the 
assumption that demand is constant over time.

In this research, we choose to use Economic Lot-Sizing (ELS) models for the trade-
off. Mostly, the focus in green lot-sizing is on the development of efficient algorithms 
for the formulated problems. One shortcoming of the mentioned ELS studies is that 
they only introduce generic emission parameters related to transport (per shipment 
and sometimes per item transported), and to inventory (per item stored at the end 
of a given period, or a fixed emission q uantity f or h aving a ny i nventory a t a ll). A 
survey on green inventory management by [1] confirms that the f ocus i s mathemat-
ical modeling approaches, rather than on the computation of emission parameters. 
However, little effort i s made t o d etermine r ealistic values o f t hese p arameters. In 
contrast the previously mentioned study, [2] use lot-sizing models to measure the im-
pact of measures such as carbon caps, taxes, and trading schemes. To the best of our 
knowledge, this is the only ELS paper that focuses on the trade-off between emissions 
savings and costs. However, the chosen parameter values are fictitious. Therefore, a 
conclusion such as “emission caps could be achieved more cost-effectively by adjusting 
operational decisions than by investing in costly more energy-efficient technology” [2] 
could be the result of the parameter choice.

ELS models provide a realistic way of modeling the trade-off b etween c osts and 
carbon emissions in specific b ut r elevant s ituations. H owever, c urrent g reen lot-
sizing models are often rather stylized. That makes it difficult to assess the trade-off: 
Is it actually worthwhile to reduced the number of shipments in an ELS setting 
to reduce carbon emissions? The aim and contribution of this research is to fill 
this gap by answering the following question: Under which conditions is it sensible 
for a decision-maker, e.g., a logistics provider, to reduce carbon emissions 
related
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to shipping decisions in Economic Lot-Sizing (ELS)? To that end, we consider the
following sub-questions:

• What is the shape of the trade-off between cost and carbon emissions in an ELS
setting?

• What are relevant parameters that determine this trade-off?

To answer these questions, we use the following methodology. We formulate a new 
ELS model, which includes realistic emission parameters. The emissions arise from 
transporting a given amount of items by truck and from holding items on inventory as 
well as possible. The model needs realistic ranges of values to ensure that it is valid for 
its purpose, assessing the trade-off between carbon emission and costs under realistic 
conditions. In order to find the trade-off curve, we use techniques and measures from 
bi-objective optimization. In the numerical experiments, we identify and vary the 
factors, such as product attributes, which affect t he c arbon emissions a nd/or costs 
and thereby, the trade-off between these objectives.

We highlight that our contribution is the construction and usage of a model for 
generating insights rather than the solution of a given model or the development of a 
novel solution approach. Our contribution, based on answering the above questions, is 
relevant as it provides practitioners and researchers with insights and tools to perform 
a realistic trade-off assessment and to identify situations where carbon emissions can 
be reduced at a low cost. An additional benefit o f o ur e xperiments i s t hat we can 
identify the relative relevance of inventory and transport-based emissions. In addition 
to the obtained insights, as a by-product, we have conducted a systematic literature 
study to assess carbon emission data from transporting a given amount of items and 
from holding items on inventory, which may be useful for other studies as well.

2 The problem setting
The setting which we consider is as follows. A company orders materials from a 
supplier on a periodic basis. We assume that the demand quantities within the 
horizon are known and deterministic. Emissions and set-up costs of production, e.g., 
related to starting a machine, are not considered in this paper.

For the transportation of the shipment, dedicated Full Truck Load vehicles are 
available. Note that if Less Than Truck Load vehicles are used, it is not clear that 
larger shipment sizes lead to reduced carbon emissions, since it depends on the other 
load traveling on the truck. The delivery is in the form of direct shipments between a 
supplier and an OEM. So-called milk run shipments, in which deliveries from multiple 
suppliers are collected, are not considered in this study. The inclusion of such ship-
ments, in particular when the timing of deliveries from multiple suppliers can vary,
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can result in a highly intractable Inventory Routing Problem or Joint Replenishment
Problem formulation.

We assume that decisions on the transportation route are independent of the
delivery decisions. Only one route is considered, and the vehicle follows the driving
conditions on the route. As a consequence, the choice between different routes and
speeds is not a decision within our case, but a choice taken separately. This modeling
choice will be motivated in more detail.

In our study, we consider the trade-off between costs and carbon emissions from
an operational and tactical perspective. The resources and the supply network are
available, and the question is how to use the resources. In this situation, an ELS
type model allows us to mimic the decisions on how much to ship and how much
to put on inventory in a specific time period and their consequences in detail. This
offers a natural starting point for analysis. The study can be extended to strategic
decisions, which usually deal with capacity and concern the composition and size of
the fleet of vehicles, the reservation of capacity of different transportation modes, and
the size of the storage space. The scope of our study differs from that of many EOQ
studies, in which decisions under consideration are generally at a strategic level, such
as investments in new technologies and the selection of supply.

To summarize, for a tactical horizon (typically up to a year ahead), we determine
the periods in which we place orders. From this decision, we obtain the order and
inventory quantities in each period. These quantities in turn determine the costs and
the carbon emissions. The goal is to obtain solutions with different costs and carbon
emissions and find the shape of trade-off between the two. Further details can be
found in [3] on which this abstract is based.
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TUM School of Management, Technical University of Munich
bahar.okumusoglu@tum.de

Martin Grunow
TUM School of Management, Technical University of Munich
martin.grunow@tum.de

Abstract

The food sector in the European Union aims to reduce greenhouse gas emis-
sions by incorporating various policies during planning stages. In this regard,
demand substitution is a highly relevant practice for lowering emissions and ad-
dressing stock-outs in the food industry. In this work, we consider a vertically
integrated food producer operating a capacitated production system for mul-
tiple perishable products with substitutable demands. Due to environmental
regulations, the producer must also ensure that the periodic carbon emissions
do not exceed predefined environmental limits. We assume that products have
fixed shelf-lives and constant production lead times. We formulate this prob-
lem as a multi-stage stochastic program with an infinite time horizon. To deal
with the high-dimensional state space, we propose an approximation based on
a two-stage stochastic program and solve it in a rolling horizon procedure. Our
preliminary numerical results highlight the value of our proposed formulation
for production and inventory planning of perishables and product substitution.

1 Introduction

In the European Union, various industries make significant efforts to reduce green-
house gas emissions. This effort is particularly important for perishable products as 
they heavily have carbon-emitting impacts. To mitigate these impacts, more environ-
mentally friendly practices such as demand substitution are being increasingly used 
in the food sector. In this regard, production and inventory planning for perishables 
plays a pivotal role in achieving carbon emission goals. Traditionally, these plan-
ning models have only focused on minimizing setup, production and inventory costs.
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However, shifting toward more sustainable practices necessitates more advanced mod-
eling in decision-making. In particular, carbon-aware planning models with perish-
able inventory address the need to minimize operational costs while simultaneously 
restricting carbon emissions through setup, production and inventory.

In production planning, lot-sizing is a fundamental problem that determines the 
optimal setups and production amounts while meeting demand with minimum oper-
ational costs. With the increasing need for sustainable policies, integrating carbon-
awareness into the lot-sizing has become more relevant to the academic community 
as well as the industry. Early research on lot-sizing with carbon emission constraints 
[Absi et al., 2013, 2016, Benjaafar et al., 2013] introduced various carbon policies and 
emission constraints into production planning models and highlighted their impacts on 
operational decisions. These policies and constraints are important for high-emission 
sectors such as the food industry, where the production and inventory of perishables 
contribute heavily to carbon footprints. In particular, carbon-aware lot-sizing helps 
decision-makers obtain cost-optimal policies aligned with their carbon emission goals.

In inventory management, perishable products present challenges due to their fixed 
shelf-lives and stock-outs. In the literature, some studies [Deniz, 2007, Karaesmen 
et al., 2011, Nahmias, 1982] have already emphasized the importance of managing 
age distributions in stock. On the other hand, demand substitution has also been 
shown to be an effective strategy for minimizing stock-outs [Hsu et al., 2005, Lang 
and Domschke, 2010]. To address these real-world challenges, the stochastic lot-sizing 
problem can be extended to include age-differentiated demand and stockout-driven 
substitution. As perishable products contribute significantly to carbon emissions 
through production and inventory, carbon-aware lot-sizing remains as an important 
problem in obtaining cost-optimal and sustainable policies in the food industry.

Stochastic programming approaches are efficient in obtaining solutions for the 
stochastic lot-sizing under practical applications, see, e.g., [Thevenin et al., 2021, 
2022]. However, the carbon-aware lot-sizing under demand substitution remains un-
derexplored in production and inventory planning for perishable products as they 
significantly contribute to carbon emissions whereas substitution among these prod-
ucts offers reduced waste and increased service levels. We aim to contribute to the 
literature by proposing a stochastic programming framework that combines carbon-
awareness and substitution for perishable products, moving toward more sustainable 
and efficient production and inventory systems.

2 Problem Formulation

We consider a vertically integrated food producer operating a shared capacitated 
production system for multiple products with substitutable demands. The producer 
has to make setup, production, and substitution decisions for each product. Moreover,
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the producer policy dictates that the demand cannot be negative and backlogged due
to food regulations, and the unmet demand results in lost sales. We denote the set of
products by I = Ir ∪ Ig, where Ir and Ig are the sets of regular and green products,
respectively. Green products emit less carbon dioxide during production compared to
regular products. However, they have shorter shelf lives and produce more emissions
during storage. Due to environmental regulations, the producer has to ensure that the
periodic carbon emission during the setup, production, and storage does not exceed
the unitary environmental impact. For each product i ∈ I, we define the set of age-
classes as Ki = {1, . . . , ai}, where ai > 1 is the shelf-life of product i. We denote the
set of periods in the planning horizon by T .

Let us now denote the setup decision by xit that takes the value of one if product
i enters production in period t, and zero otherwise. The production and the shortage
quantity of product i in period t are denoted by yit and sit, respectively. The setup,
production and shortage cost of product i in period t are denoted by csetupit , cprodit and
clostit , respectively. Let vikt represent the inventory amount of product i in age-class k
at the end of period t. The company follows a first-in-first-out (FIFO) issuing policy
for each product. For each product i in age-class k, the inventory cost is given by
choldikt . The inventory amount of product i ∈ I that exceeds its shelf-life ai within the
planning horizon cannot be carried over to the next period and is disposed of with
a waste cost denoted by cwaste

it . For brevity, we also define the decision variable zit
as the total inventory amount of product i at the end of period t. The demand of
product i follows a stochastic process denoted by Di = {Di1, . . . , Di|T |}. For each
product i, we define the set of products that can be used to satisfy the demand of
product i in the planning horizon as I−i ⊆ I whereas the set of products that product
i can be used as a substitute for is denoted by I+i ⊆ I. Let qijt be the amount of
product i that is used to substitute the demand of product j in period t. For each
product i and product j ∈ I−i , there is a substitution cost denoted by csubijt in period
t. Note that no substitution cost is incurred for any product that is used for its own
demand i.e., ciit = 0.

In the remainder of our paper, we will simplify our notation by omitting the
index of interest when referring to the vector of decision variables or parameters. For
example, xt denotes the vector in the form of (x1t, . . . , x|I|t). We let dit = Dit(ωit)
be the realization of the demand process of product i in period t. We also denote
by D[1,t] = (D1, . . . , Dt) the history of demand up to period t whereas the history of
demand realizations up to time t is given by d[1,t] = (d1, . . . , dt).

For each product i, the unit carbon emissions that result from setup operations,
production, and inventory in period t are denoted by esetupit , eprodit and einvit , respectively.
Due to environmental regulations, the company wants to ensure that the average
carbon emission during setup operations, production, and inventory in period t does
not exceed the maximum carbon emission Esetup

t , Eprod
t and Einv

t , respectively. For
brevity, let us define the unit carbon emission vector as eit := (esetupit , eprodit , einvit ) and
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maximum carbon emission vector as Et := (Esetup
t , Eprod

t , Einv
t ). Finally, we define

the following set denoted by Mt as the feasible emission set that restricts the total
periodic emission resulting from setup, production, and inventory in period t.

Now we are ready to present the stochastic dynamic programming formulation for
our problem:

Qt(vt−1, d[1,t]) = min
∑

i∈I
(csetupit xit + cprodit yit + clostit sit + cwaste

it vi,ai,t)

+
∑

i∈I
(
∑

k∈K′i

choldit vikt +
∑

j∈I−i

csubijt qijt)

+ EDt+1{Qt+1(vt,D[t+1])|D[1,t] = d[1,t]} (1a)

s.t. For each i ∈ I: (1b)

dit + sit =
∑

j∈I+i

qjit (1c)

vi,ai,t − ui,ai−1,t = vi,ai−1,t−1 −
∑

j∈I−i

qijt (1d)

vi,k+1,t − uikt = vik,t−1 − ui,k+1,t, k ∈ K′′i (1e)

vi1t = yit − ui1t (1f)

uikt ≤Mitrikt, vi,k+1,t ≤Mit(1− rikt), k ∈ K′i (1g)

zit =
∑

i∈Ki

vikt (1h)

(xt, yt, zt) ∈Mt(et, Et) (1i)

yit ≤ Citxit (1j)

sit ≤ dit (1k)

rt ∈ {0, 1}|I|×|Ki|, ut, vt ∈ R|I|×|Ki|
+ , qt ∈ R|I

+
i |×|I

−
i |

+ (1l)

xt ∈ {0, 1}|I|, yt, st ∈ R|I|+ . (1m)

3 First Numerical Results

The multi-stage stochastic programming formulation in (1) is computationally in-
tractable due to its high-dimensional state space and exponential growth in sce-
nario trees. To approximate production and inventory policies, we utilize a two-
stage stochastic programming framework. Scenarios are generated through uniform 
sampling. We first adopt a static-static uncertainty approach, where setup and pro-
duction decisions are made in the first stage, while second-stage variables depend on
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the specific scenario. The resulting deterministic equivalent problem is solved using
the state-of-the-art commercial solver Gurobi. Due to pending industry data, for our
initial experiments, we use synthetic data, focusing on only two products: a ”green”
product and a ”regular” product. Demand is assumed to follow a lognormal distri-
bution, and results are analyzed across different scenario sizes, varying setup costs,
and demand levels. We also compare our stochastic programming framework with
the deterministic approximation in which the mean of the corresponding distribution
is used for each product.

Our experiments yield several insights. When varying setup costs, we observe
that low or no setup costs reduce total inventory levels and lead to higher production
and substitution decisions. However, the impact of setup costs diminishes when
total demand exceeds capacity. On the other hand, demand variations highlight the
value of substitution: it reduces waste and lost sales, particularly under low-demand
scenarios. In congested systems with high demand, substitution becomes less effective
as the system’s flexibility decreases. Also, emissions from production and inventory
are influenced by setup costs and demand levels. Low setup costs result in higher
inventory-related emissions, whereas high setup costs reduce emissions through lower
production levels. Additionally, emissions are lowest in low-demand scenarios, with
substitution offering significant reductions in both waste and lost sales, particularly
under moderate congestion.
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1 Introduction

Semiconductor manufacturing includes probably the most complex production pro-
cesses, with each product requiring several hundred steps to be processed on hetero-
geneous machines. Additionally, re-entrant flows and congestion must be considered, 
which results in a production lead time ranging from 8 to 20 weeks from a blank silicon 
wafer to a wafer with finished c hips. This c omplexity i s f urther exacerbated by the 
large volume of wafers processed in a single factory with hundreds of heterogeneous 
machines, as well as the high number of different products in high-mix factories.

In this work, we consider an operational production planning problem encountered 
in semiconductor manufacturing. This is a multi-product, multi-step, multi-machine
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production planning problem, with the goal of minimizing the work-in-process, in-
ventory and backlog costs, while respecting machine capacity. Given the scale of 
operations, where tens of thousands of wafers are manufactured every day, this is a 
highly complex optimization problem.

To address this problem, a novel and efficient co lumn ge neration ap proach was 
proposed in [1]. This approach was later extended in [2] to consider various industrial 
constraints. However, to improve the convergence of the column generation approach 
for industrial instances, it is crucial to start with an appropriate initial set of columns. 
Since production plans are executed over a rolling horizon and span several months, 
we propose, in this work, to integrate and adapt previously generated timed routes to 
enhance the stability of the production plan and to significantly reduce computational 
times.

2 Concept of Timed Route

The approach in [1] relies on the notion of ”timed routes”, where each production 
step is assigned to a specific t ime p eriod i n t he manufacturing r oute o f a  product. 
Thus, a timed route provides a complete temporal representation of the production 
flow of a  given product, specifying precisely in which period the production capacity 
is required. The problem consists of optimizing the production quantities along these 
timed routes. However, the number of possible timed routes grows exponentially 
with the number of production steps, making exhaustive enumeration impractical in 
industrial instances. This justifies t he u se o f a  c olumn g eneration a pproach, where 
only the most relevant timed routes are generated. The notion of timed route was 
extended in [2] to include machine assignment, leading to the notion of ”machine 
timed route”, where each production step is also assigned to a specific machine.

By solving the problem with continuous variables, it is possible to find optimal 
solutions even for industrial instances, typically with computational times of approx-
imately 24 hours. However, this is still far too long for operational deployment in 
industrial settings. Therefore, techniques to accelerate the resolution process are 
essential.

3 Warm Start approach
In semiconductor manufacturing, it is rare to compute a production plan from scratch. 
Typically, plans are determined in a rolling horizon approach, where a new plan is 
calculated periodically (for example, every week), but due to long cycle times, many 
products from the previous plan remain in production. Plans may also be computed 
in what-if scenarios, where only limited changes are introduced. In this case, a large 
number of products will not be impacted by the changes. In both cases, the plan
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computed in a previous calculation can be reused as a starting point to determine the
new plan, which can greatly improve the quality of the initial solution and accelerates
convergence, thus reducing the computational time to find the optimal solution. This
strategy is known as a “Warm Start”.

Timed routes are particularly well suited to apply aWarm Start approach, because
generating a new production plan can reduce to adjusting the quantities associated
with the existing timed routes. It is also possible to reuse previously generated timed
routes to generate new ones.

However, reusing previously generated timed routes is not trivial, and several
strategies can be considered:

• Limiting the number of reused timed routes. More reused timed routes may lead
to a better initial solution, but may also slow down subsequent iterations.

• Adapting timed routes to fit the new context. Adjustments may be needed when
demand or machine availability has changed.

• Focusing the re-optimization on impacted products. For what-if analyses, we
can decide to focus only on a subset of products.

4 Numerical results
To assess the effectiveness o f t he W arm S tart s trategy ( i.e., r eusing t he optimal 
solution from a previous resolution), we solve the same instance twice: Without 
(From Scratch) and with warm start. In our first c omputational e xperiments, we 
used a reduced data set with a limited number of products, ensuring computational 
times of a few minutes.

In this work, we consider industrial instances provided by the most advanced site 
of STMicroelectronics in Crolles, France. The instances include 30 products and 700 
machines, and the plan is determined over 60 periods (days). The different instances 
correspond to different moments in t ime. In Tables 1 and 2, the first line represents to 
the different instances and the second line, respectively the third line, corresponds to 
the computational time to find an optimal s olution From Scratch, r espectively with 
Warm Start. Finally, the last line shows the time saving in percentage obtained by 
using Warm Start.

As shown in Table 1, the warm start strategy yields time savings of 90% in what-
if scenarios. In rolling horizon planning (Table 2), results are more variable and 
instance-dependent, but generally lead to significant g ains. We e xpect t hese time 
savings to be even more significant on full datasets, as the ratio of t imed routes not 
impacted by the changes should be much larger. Preliminary experiments on full 
instances are showing promising results. For example, in a what-if scenario, finding
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CPU time (seconds)
Instance #1 #2 #3 #4 #5 #6 #7 #8 #9
From Scratch 405 329 917 603 356 420 512 610 344
Warm Start 31 8 31 84 20 18 49 36 24
Saved (%) 92% 98% 97% 86% 94% 95% 91% 94% 93%

Table 1: Comparison of CPU times between Warm Start and From Scratch: What-if
analysis.

CPU time (seconds)
Instance #1 #2 #3 #4 #5 #6 #7 #8 #9
From Scratch 329 382 483 451 596 629 696 777 770
Warm Start 267 341 223 217 571 480 164 879 563
Saved (%) 19% 11% 54% 52% 4% 24% 76% -13% 27%

Table 2: Comparison of CPU times between Warm Start and From Scratch: Rolling
horizon.

an optimal solution From Scratch took approximately 33 hours, while Warm Start
converged in just 1.5 hours. Moreover, Warm Start allows a good solution to be
reached very quickly: A few seconds are enough to obtain a 99%-optimal solution,
whereas it took 20 hours with From Scratch.
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Abstract

Blending problems occur when different c omponents n eed t o b e m ixed in 
order to form an end product. The recipe typically has some flexibility as long 
as some specific quality conditions are m et. We consider this as a multi-period, 
multi-level lot sizing problem in which we need to determine the purchase quan-
tities of the components and the production quantities for the end products 
(and their respective setups). Lead times for the availability of the components 
and the end products are assumed. Demand uncertainty is represented by a 
scenario tree in which the decision-making unfolds period by period as demand 
is stochastically revealed. The objective is to minimize the expected total cost, 
including inventory, production, purchasing, setup, and lost sales costs. We 
present different decision-making f ramework combinations f or deciding on the 
setup and the production quantities of the end products and the components in 
the multi-stage stochastic setting. We additionally develop a heuristic method 
that employs a sequence of two-stage stochastic approximations for solving 
the resulting scenario-tree based models. Computational experiments are con-
ducted to evaluate the performance of the methods to approach the stochastic 
problem with respect to the associated costs and solution difficulty.
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1 Problem statement

We consider a production planning problem involving 1, . . . , |P| distinct end prod-
ucts. These products are obtained through a blending process that mixes 1, . . . , |C|
different components. The bill of materials of the products also associates the spec-
ifications that must be satisfied over 1, . . . , |Q| relevant quality characteristics. The
demand dE for the end products must be met over 1, . . . , |T | discrete time periods.

An integrated plan is required for both the purchasing of the components and
the production of the end products [1]. Due to the presence of lead times, the end
products produced and the components purchased in a given time period may only
become available in some time periods later.

The plan involves deciding on the purchase and the production quantities, denoted
by xC ≥ 0 for the components and xE ≥ 0 for the products, which are only possible
when there are respective setups yC ∈ {0, 1} and yE ∈ {0, 1}. The blending decision,
represented by pE ≥ 0, determines the quantity of component used in the production
of end products. Inventory levels sC ≥ 0 for the components and sE ≥ 0 for the
products are carried between periods. Any unmet product demand is considered a
lost sale, denoted by lE ≥ 0.

The decision-making process is characterized by demand uncertainty in a multi-
stage stochastic setting. The demand is realized between the time periods 1, . . . , |T |
by an underlying probability distribution. The demand realization at each stage has a
finite number of possible outcomes. We use a scenario tree to represent the stochastic
structure of the problem [2]. In the scenario tree, each node n ∈ N represents a point
in the sequential unfolding of demand realizations dE(n), associated with a specific
probability P(n) and the corresponding decision-making at a given stage t(n) ∈ T .

The resulting multi-stage stochastic problem based on the scenario tree formula-
tion is (1)-(12).

min
∑

n∈N

∑

i∈C
P (n)

(
scCit(n)y

C
i (n) + vcCit(n)x

C
i (n) + hcCit(n)s

C
i (n)

)

+
∑

n∈N

∑

j∈P
P (n)

(
scEjt(n)y

E
j (n) + vcEjt(n)x

E
j (n) + hcEjt(n)s

E
j (n) + pcEjt(n)l

E
j (n)

)
(1)
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Subject to:

xE
j (n) ≤ ME

jt(n)y
E
j (n) ∀j ∈ P, n ∈ N (2)

xC
i (n) ≤ MC

it(n)y
C
i (n) ∀i ∈ C, n ∈ N (3)

sEj (a(n)) + lEj (n) +

t(n)∑

t=1

1{t+ltEjt=t(n)}x
E
j (at(n)) = sEj (n) + dEj (n) ∀j ∈ P, n ∈ N (4)

sCi (a(n)) +

t(n)∑

t=1

1{t+ltCit=t(n)}x
C
i (at(n)) = sCi (n) +

∑

j∈Pi

pEij(n) ∀i ∈ C, n ∈ N (5)

lEj (n) ≤ dEj (n) ∀j ∈ P, n ∈ N (6)

xE
j (n) =

∑

i∈Cj

pEij(n) ∀j ∈ P, n ∈ N (7)

quqjx
E
j (n) ≥

∑

i∈Cj

qaqip
E
ij(n) ∀j ∈ P, n ∈ N (8)

qlqjx
E
j (n) ≤

∑

i∈Cj

qaqip
E
ij(n) ∀j ∈ P, n ∈ N (9)

xC
i (n), sCi (n) ≥ 0, yCi (n) ∈ {0, 1} ∀i ∈ C, n ∈ N (10)

xE
j (n), sEj (n), lEj (n) ≥ 0, yEj (n) ∈ {0, 1} ∀j ∈ P, n ∈ N (11)

pEij(n) ≥ 0 ∀i ∈ C, ∀j ∈ P, n ∈ N (12)

The objective function in (1) minimizes the expected total cost, which includes the 
setup, purchasing, and inventory costs for the components, plus the setup, production, 
inventory, and lost sales costs for the end products. Constraints (2) guarantee that 
the production of products occurs only if there is setup. Constraints(3) ensure that 
there is setup for the purchase of components. Constraints (4) and (5) describe the 
inventory balance for products and components, respectively. In these constraints, 
a(n) denotes the parent node of node n, which links nodes across subsequent stages 
through inventory carrying. The auxiliary parameter 1{.} is used to indicate stocking 
under the lead times for purchased and produced the quantities, which takes the value 
1 whenever the subscribed condition is verified, and 0  o therwise. Constraints (6) im-
pose that the amount of demand that is lost is at most the total realized demand. 
The blending of components into end products is described by constraints (7), where 
constraints (8) and (9) impose the final composition to meet the quality conditions. 
The domain for the decisions associated with the components is determined by con-
straints (10). Finally, the domain for the decisions associated with the products is 
determined by (11), (12).

2 Decision-making settings
The multi-stage stochastic formulation (1)–(12) assumes that decisions are made in re-
sponse to realized demand. In contrast to this fully dynamic decision-making setting,
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early planning is often necessary in practice [3]. The purchasing phase is typically
determined in advance of the demand realization to ensure component availability,
as it directly constrains the subsequent production phase. The production phase, in
turn, may follow different decision timing depending on its anticipation relative to
the demand realization. Table 1 summarizes the combinations of different anticipa-
tory strategies considered for the purchasing and production planning, which lead to
alternative settings for the multi-stage stochastic problem.

Table 1: Decision timing for purchase and production under different settings.
Problem Setting Purchasing Decisions Production Decisions

Purchasing Production Setup yC Quantity xC Setup yE Quantity xE

Static Static Stage Start Stage Start Stage Start Stage Start
Static Static-Dynamic Stage Start Stage Start Stage Start After Demand Realization
Static Dynamic Stage Start Stage Start After Demand Realization After Demand Realization

3 Sequential heuristic approximation

We propose a heuristic approach in which the multi-stage problem is decomposed 
into a chain of two-stage stochastic subproblems [4]. The chain of subproblems has 
an initial subproblem defined at a dummy stage, followed by one subproblem for each 
node in the scenario tree. This chain of subproblems is solved sequentially across 
stages, iteratively using previously determined solutions to guide the construction 
of decisions in subsequent iterations. The goal is to progressively generate a pool of 
candidate variable values for the setup decisions for the components and the products, 
and then apply a rule to determine their final values. The final setup variable values 
form a partial solution for the multi-stage stochastic problem. Thus, the remaining 
decision variables for the multi-stage stochastic problem are obtained by optimizing 
the multi-stage stochastic model with these setup decision variables fixed.

4 Computational results
We carried out computational experiments using test instances under different param-
eter settings within the problem to evaluate the different multi-stage stochastic mod-
eling approaches. Table 2 reports the computational results across 48 instances using 
the different decision-making settings to address the multi-stage stochastic problem. 
The reported values include the optimal solution count, the average solution time 
(in seconds), and the average expected cost. The header ’Exact’ corresponds to the 
results regarding multi-stage stochastic models directly solved using the commercial 
solver, and ’ST S’ corresponds to the results using the setup variable values from the 
sequential two-stage stochastic heuristic. The average running time of the heuristic 
is 14.7 seconds.
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Table 2: Summarized results for the Expected Cost and Solution Time across 48 test instances.
Problem Setting Opt. Count Sol. Time Exp. Cost

Purchasing Production Exact STS Exact STS Exact STS
Dynamic Dynamic 44 48 433.4 0.8 25,876,081 30,241,516
Static Dynamic 46 48 223.6 0.8 25,939,077 30,306,594
Static Static-Dynamic 46 48 231.5 0.8 25,945,894 30,306,594
Static Static 48 48 14.8 0.8 25,973,742 30,348,875

5 Conclusions

The computational results highlight the trade-offs between the expected cost and
the computational effort associated with different anticipatory strategies. Notably,
the problem settings with lower degrees of anticipativity in the decision-making tend
to result in higher objective costs, whereas those with greater anticipativity yield
lower costs. The decision frameworks with more anticipation also result in a simpli-
fied mathematical model structure when compared to the fully dynamic multi-stage
stochastic problem, which results in faster solution times.

The computational results also demonstrate the performance of the sequential two-
stage stochastic approximation as an alternative solution approach. The sequential
heuristic strategy yields implementable solutions while significantly reducing the final
computational time of the mathematical models. The outcome of this approximation
is heuristic values for the setup decision variables that lead to increased objective
costs in the multi-stage stochastic problem.
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Abstract

We address a multi-period stochastic disassembly scheduling problem us-
ing a two-stage program where first-stage scheduling is coupled with a com-
plex recourse stage governed by a shared procurement cost. To solve this NP-
hard problem, we propose a decomposition-inspired Simulated Annealing (SA)
heuristic that uses an embedded MIP solver to evaluate the recourse. We bench-
mark the SA against a full extensive-form MIP and a deterministic model to
analyze the trade-offs between heuristic performance, solution exactness, and
the value of stochastic modeling.

1 Introduction

The transition to a circular economy hinges on the ability to recover valuable modules 
and materials from end-of-life products efficiently. A pr imary op erational challenge 
in this domain is disassembly scheduling, which involves assigning and sequencing 
returned product cores on available machines that recover a number of still usable 
modules from them, with the goal of meeting a certain module demand. This process 
is fundamentally complicated by uncertainty: the quantity and quality of modules 
recovered from a core are often known only in a probabilistic sense. Effective planning, 
therefore, requires methods that can produce robust schedules in the face of these 
random module yields [1, 3]. The challenge, which we address in this work, extends 
beyond simple scheduling. Optimal planning must integrate short-term, operational 
scheduling decisions with long-term, tactical inventory policy over a multi-period
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horizon. The schedule chosen in the current period directly impacts the stochastic 
supply of modules available to meet future demands. This creates a difficult trade-off: 
a schedule that seems efficient locally may lead to costly future stockouts or overages. 
A successful model must navigate this interplay between proactive scheduling and 
reactive, dynamic inventory management.

To tackle this problem, we make the following contributions. First, we formulate 
a two-stage stochastic program that captures this dynamic link between scheduling 
and multi-period inventory decisions under yield uncertainty. Second, recognizing 
the NP-hard nature of the resulting model, we develop a Simulated Annealing heuris-
tic—drawing on Logic-Based Benders Decomposition—to efficiently so lve th e two-
stage stochastic scheduling and inventory model under yield uncertainty, and bench-
mark its performance against both the full extensive-form MIP and a deterministic 
expected-value model.

2 Problem Definition

We address a multi-period disassembly scheduling problem over a finite horizon of T 
periods. In period t ∈ T = {1, . . . , T }, a set Jt of returned product cores arrives which 
must be scheduled for disassembly on one machine from a set M of heterogeneous 
parallel machines. Disassembling a core can potentially yield modules of type r ∈ 
R, but the exact quantity of each recovered module type is uncertain. We assume 
however that the yield ξjkrt, i.e. the number of usable modules of type r obtained from 
disassembling core j ∈ Jt on machine k, is a random variable with known probability 
distribution. These probabilities can follow from historical analysis, from an expert’s 
assessment or from other knowledge in the domain. In period t, there is a demand 
of Drt modules of type r and we try to cover that demand by optimally scheduling 
the cores on the machines. A schedule is both an assignment xjkt (1 if core j ∈ Jt is 
disassembled on machine k ∈ M, and 0 otherwise) and a sequence yijkt (1 if core i is 
disassembled immediately before core j on machine k, 0 otherwise, with i, j ∈ Jt).

We formulate the problem as a two-stage stochastic program. In the first stage, 
we determine a proactive schedule, whose performance is then evaluated under each 
future scenario ω ∈ Ω, where Ω is a finite set of s cenarios. The realized yields from this 
schedule then become an input to the second stage, driving the reactive decisions on 
procurement, salvage, and inventory management. Specifically, second-stage recourse 
variables determining the inventory policy are vrt(ω) (1 if type-r modules are procured 
in period t, 0 otherwise). In period t of scenario ω, qr+t(ω) and qr−t(ω) respectively are 
the number of procured and salvaged modules of type r and Irt(ω) is their inventory 
level at the end of the period.

On machine k, disassembly of job j requires a processing time of pjk, and the setup 
time between jobs i and j is sequence-dependent, denoted by sijk for all i, j ∈ Jt.
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Moreover, Hmax represents the maximum capacity in hand on each machine during
period t. There is a cost cjk for assigning core j to machine k, a cost ctime per unit
makespan time, an inventory holding cost hr per period and per module of type r,
and a salvage price c−rt per type-r module in period t. Procurement incurs a fixed cost
Ft for placing an order in period t, plus a variable cost c+rt per type-r module. Denote
a schedule as x = (xjkt, yijkt; i, j ∈ Jt, k ∈ M, t ∈ T ), then the first-stage formulation
becomes

min
x

∑

t∈T

(
ctimeCmax,t +

∑

j∈Jt

∑

k∈M
cjkxjkt

)
+ Eω[Q(x, ω)] (MP)

s.t.
∑

k∈M
xjkt = 1 ∀t ∈ T , j ∈ Jt ,

∑

i∈J0t,i̸=j

yijkt = xjkt ∀t ∈ T , k ∈ M, j ∈ Jt ,

∑

j∈J0t,j≠i

yijkt = xikt ∀t ∈ T , k ∈ M, i ∈ Jt ,

∑

j∈Jt

y0jkt ⩽ 1 ∀t ∈ T , k ∈ M ,

Cjt ⩾ Cit + sijk + pjk −M(1− yijkt) ∀t, k, i ∈ J0t, j ∈ Jt, i ≠ j ,

Cmax,t ⩾ Cjt ∀t ∈ T , j ∈ Jt ,

Cmax,t ⩽ Hmax ∀t ∈ T ,

xjkt, yijkt ∈ {0, 1}, Cjt, Cmax,t ≥ 0 ∀t ∈ T , k ∈ M, i, j ∈ Jt ,

where J0t = Jt ∪ {0} and M is a big enough positive number. For a fixed schedule x
and scenario ω, the second-stage recourse Q(x, ω) is

Q(x, ω) = min
∑

t∈T

(
Ftzt(ω) +

∑

r∈R

(
c+rtq

+
rt(ω)− c−rtq

−
rt(ω) + hrIrt(ω)

))

s.t.
∑

j,k

ξjkrt(ω)xjkt + Ir,t−1(ω) + q+rt(ω)− q−rt(ω)

= Drt + Irt(ω)

∀r ∈ N , t ∈ T ,

q+rt(ω) ⩽ Urtvrt(ω) ∀r ∈ N , t ∈ T ,

vrt(ω) ⩽ zt(ω) ∀r ∈ N , t ∈ T , (1)

zt(ω), vrt(ω) ∈ {0, 1}, q±rt(ω) ∈ N, Irt(ω) ∈ N ∀r ∈ N , t ∈ T ,

with initial inventory Ir0 = 0 for all types, and where Urt is a sufficiently large upper
bound on procurement of type-r in t, e.g. Urt =

∑T
t′=tDrt′ . The linking constraint

(1) enforces the fixed cost Ft if any type-r module is procured in period t.
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3 Solution Methodologies

Our primary approach is a Simulated Annealing (SA) heuristic inspired by the struc-
ture of Logic-Based Benders Decomposition (LBBD) [2]. In this framework, the SA
serves as a heuristic master problem to explore scheduling decisions. For each can-
didate schedule, we solve the second-stage recourse subproblem to optimality using
an MIP solver. We also directly solve the extensive form of the formulation above,
in which the expectation in the MP objective is replaced by an average over |Ω| ran-
domly generated yield scenarios. The resulting cost is then used to guide the SA
search and update its solution.

4 Computational Study and Conclusion

In our experiments, we consider a planning horizon of T = 3 with |Jt| = 6, |M| =
2, |R| = 3, and |Ω| = 10, under a CPU time limit of 60 s. The extensive MIP
formulation timed out, yielding a best incumbent solution of 1294.28 and a lower
bound of 1222.27. Our SA heuristic reached a solution cost of 1303.40, whereas the
deterministic expected-value model (EVM) schedule cost 1312.12. This corresponds
to a value of the stochastic solution (VSS) of 17.83, thereby demonstrating the benefit
of the stochastic model.

We formulated a two-stage stochastic program for disassembly and inventory un-
der yield uncertainty, and showed that an SA heuristic delivers near-optimal solutions
within a practical time. Future work will develop multi-stage formulations to relax
the implicit perfect-foresight in our second stage and incorporate adaptive updates of
yield distributions.
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Abstract

We address the multi-item capacitated lot-sizing problem under decision-
dependent uncertainty via a probing-enhanced stochastic programming frame-
work. Demand is correlated with another random vector, and the decision-
maker can acquire partial information by probing components of this vector, 
conditioning decisions on observed covariates. This generalizes classical mod-
els by embedding information acquisition into a three-stage framework. We 
propose a compact reformulation that removes non-anticipativity constraints, 
yielding stronger relaxations and better tractability. We extend classical in-
equalities and introduce value-function cuts that capture the link between prob-
ing and recourse costs. These are embedded in a branch-and-cut algorithm with 
a primal heuristic. Results show our method outperforms off-the-shelf solver, 
reducing optimality gaps by up to 85%, and achieving gaps below 1.5% on 
average. Results highlight the importance of structured reformulation, valid 
inequalities, and heuristics in solving decision-dependent stochastic programs.
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1 Introduction

Lot-sizing is a core problem in production and inventory management, focused on 
determining optimal production or ordering quantities over time to meet demand at 
minimal cost. While traditional models often assume known or exogenously uncertain 
demand, stochastic programming approaches have been developed to address uncer-
tainty more realistically by incorporating probabilistic demand distributions [1, 2]. 
However, these models typically treat uncertainty as fixed and uncontrollable, over-
looking the possibility of actively reducing it through information acquisition.

We consider a classical Multi-Item Capacitated Lot-Sizing Problem (MCLSP) 
under demand uncertainty, where a single production resource is used to manufacture 
multiple items over a finite p lanning h orizon. Each i tem f aces uncertain demand in 
each period, modeled as a random variable with a known probability distribution. 
The planner must decide in advance which items to produce and in what quantities, 
while respecting production capacity limits and incurring setup, production, holding, 
and lost sales costs. The objective is to minimize the total expected cost, accounting 
for both early-stage decisions and later adjustments once demand is realized.

In many real-world settings, firms c an i nfluence th e ac curacy of  de mand fore-
casts by strategically observing information such as consumer behavior, demand 
trends, pricing, or promotional data at a cost. Such practical considerations motivate 
decision-dependent uncertainty models, particularly the probing-enhanced stochastic 
programming framework [3], where early decisions determine what information should 
be acquired. We apply this framework to the stochastic MCLSP, allowing planners 
to selectively probe external signals (covariates) that are statistically correlated with 
future demand. The resulting model follows a three-stage structure: first, the planner 
chooses which covariates to probe; second, setup and production decisions are made 
based on the observed information; and third, after demand is fully revealed, the 
planner adjusts through inventory or lost sales decisions. This approach is especially 
valuable in environments with high uncertainty and limited resources for information 
gathering, enabling more informed and cost-effective production planning.

2 Branch-and-cut-based decomposition approach
We develop a scalable branch-and-cut-based decomposition algorithm for solving the 
probing-enhanced MCLSP, built upon three key ingredients. First, we introduce a 
novel reformulation (ALF) that improves numerical stability and yields stronger re-
laxations by avoiding classical non-anticipativity constraints in the representation 
of decision-dependent uncertainty (NAF). Second, we extend the classical (k, U) in-
equalities to incorporate probing decisions, linking setup and production variables 
with information acquisition actions. These inequalities strengthen the formulation
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and improve the convergence of the algorithm. Third, we propose a new class of value-
function-based inequalities derived from item-level lower bounds, which capture the
cost impact of probing decisions on recourse actions. These components are integrated
into a decomposition framework that exploits the structure of single-item subprob-
lems. The formulation serves as the master problem, while the subproblems are used
to generate both primal bounds and valid inequalities. As there are an exponential
number of the extended (k, U) inequalities, we added them dynamically to the formu-
lation to strengthen its linear relaxation. The value-function-based inequalities are
added a priori to the formulation based on the solution of single-item subproblems.
Together, these elements enable an efficient and flexible branch-and-cut algorithm
capable of solving medium-scale instances with high-dimensional uncertainty.

3 Results

Table 1 summarizes the numerical results. Columns |Ω| and |Γ| indicate the number
of scenarios used for the random variables, while |I| denotes the number of items.
Column Gap shows the relative optimality gap, computed as Gap = |UB − LB|/UB,
where UB and LB are the upper and lower bounds, respectively. Column Time (s)

reports the average total computation time in seconds. Columns #VI and #Nodes

display the total number of valid inequalities generated and the number of branch-
and-bound nodes explored.

Instance NAF ALF
|Ω| |Γ| |I| Method Gap (%) Time (s) #VI #Nodes Gap (%) Time (s) #VI # Nodes

10 5 5 CPX 0.92 648.12 0 3590 0.70 613.31 0 4895
B&C 1.61 824.91 2937 3235 1.69 805.35 2801 2619

10 CPX 9.77 844.43 0 8032 8.03 868.18 0 7329
B&C 1.69 958.47 4231 1310 1.68 958.00 3076 967

10 5 CPX 11.40 766.76 0 4447 5.59 804.18 0 11968
B&C 1.86 957.10 4629 1961 2.00 956.85 2946 521

10 CPX 30.40 895.72 0 3814 14.06 902.76 0 3818
B&C 4.90 866.69 4433 29 3.39 859.65 3254 0

Table 1: Performance of Branch-and-Cut algorithm .

The results in Table 1 show that the proposed ALF consistently outperforms 
the standard NAF, both when solved directly with CPLEX and within the branch-
and-cut framework. Across all instance sizes, ALF achieves lower optimality gaps, 
particularly in large-scale or high-scenario settings. For example, in the largest con-
figuration (|Γ| =  10, |I| =  10), ALF reduces the gap f rom 30.40% (NAF) to 14.06%
under CPLEX, and further to just 3.39% with the branch-and-cut algorithm. The 
branch-and-cut algorithm also provides significant improvements over CPLEX alone, 
especially for NAF, where it reduces the gap from 11.40% to 1.86% for medium-sized
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σ = 30 σ = 60
ϱ = −0.5 ϱ = −0.7 ϱ = −0.9 ϱ = −0.5 ϱ = −0.7 ϱ = −0.9

VPSgap EVPPIgap VPSgap EVPPIgap VPSgap EVPPIgap VPSgap EVPPIgap VPSgap EVPPIgap VPSgap EVPPIgap
3.95 0.51 6.43 0.98 10.15 1.30 8.89 0.84 15.12 1.39 22.29 2.18

Table 2: Value of probing solution for different correlation coefficient ϱ and standard deviation σ.

instances (|Γ| = 10, |I| = 5). ALF benefits similarly, achieving gaps below 2% in
most configurations when combined with branch-and-cut.

To evaluate the benefits of information acquisition, we define two metrics: the
Value of the Probing Solution (VPS) and the Expected Value of Perfect Probing In-
formation (EVPPI), analogous to VSS and EVPI in stochastic programming. VPS
captures the gain from integrating costly probing, while EVPPI reflects the additional
benefit if all information were freely available. Results show that higher demand-
covariate correlation significantly increases VPS, with relative improvements exceed-
ing 45% under high penalty and variability. Likewise, higher lost-sales penalties boost
the value of probing, confirming its importance in high-risk settings. Across all set-
tings, EVPPI remains modest (typically < 5%), indicating that most value is already
captured through selective, costly probing. This confirms the efficiency and practi-
cality of the proposed approach.

Acknowledgment. This research benefited from ANID, Beca Postdoctorado en el

extranjero, Becas Chile, Folio 74230025 and the support of the FMJH Program Gaspard

Monge for optimization and operations research and their interactions with data science,

and the Energy4Climate Interdisciplinary Center (E4C) of IP Paris and Ecole des Ponts

ParisTech, which is in part supported by 3rd Programme d’Investissements d’Avenir [ANR-

18-EUR-0006-02]. The authors also acknowledge the financial support from the Programa

de Cooperación Cient́ıfica ECOS-ANID project number ECOS230013 and the Programa

Regional STIC-AMSUD project number AMSUD240008.

References

[1] J.H. Bookbinder and J.-Y. Tan. Strategies for the probabilistic lot-sizing problem
with service-level constraints. Management Science, 34(9):1096–1108, 1988.

[2] Horst Tempelmeier. Stochastic lot sizing problems. In Handbook of Stochas-
tic Models and Analysis of Manufacturing System Operations, pages 313–344.
Springer, 2013.

[3] Zhichao Ma, Youngdae Kim, Jeff Linderoth, James R Luedtke, and Lo-
gan R Matthews. Probing-enhanced stochastic programming. arXiv preprint
arXiv:2407.10669, 2024.

80



The Production Routing Problem with Stochastic
Demand and Service Levels

Ali Kermani
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Abstract

The Production Routing Problem is an integrated problem that simulta-
neously considers lot sizing, inventory and routing decisions. We consider the
context in which demand is uncertain while certain service levels have to be
satisfied. The problem is modeled as a two-stage stochastic problem using a
scenario approach in which the production setup decisions are made in the first
stage, while the other decisions, such as the production and delivery quantities
and the routing, are made in the second stage. This leads to a highly complex
problem for which we develop a matheuristic. We iteratively solve three dis-
tinct subproblems. The first subproblem aims to find a good production setup
plan. The second subproblem determines production and delivery quantities,
while the third subproblem determines the routing decisions. The computa-
tional experiments show the effectiveness of this heuristic to find high-quality
solutions when considering various types of service levels.

1 Introduction

The Production Routing Problem (PRP) integrates production, inventory, and rout-
ing decisions to optimize supply chain operations over a finite h orizon. While the 
classical deterministic PRP assumes known demand, real-world settings often involve 
uncertainty. Early stochastic models addressed this by fixing routes in advance, but 
this limits flexibility [1]. To overcome this, we introduced the Stochastic PRP with
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Adaptive Routing (SPRP-AR), where routing decisions are made after demand real-
ization, improving cost efficiency by  up  to  6.5% [3].

Another important aspect under uncertainty is ensuring service levels. While var-
ious service level metrics have been studied in the lot-sizing literature, they primarily 
address production and inventory planning [2, 4]. In contrast, the PRP introduces the 
added complexity of routing decisions. Despite its practical importance, the integra-
tion of service level constraints into the PRP framework remains largely unexplored. 
This study is the first to incorporate four service level m easures: α  (probability of no 
stockout), β (fill rate), γ  (expected backlog to average demand ratio), and δ (expected 
backlog to maximum backlog ratio), into the SPRP-AR framework. Each is applied 
at different l evels of granularity (per customer or aggregated, per period or over the 
whole horizon), offering fl exibility in  al igning wi th di verse op erational ne eds. This 
strategy is particularly valuable in settings where outsourcing is not feasible.

The study proposes a novel two-stage stochastic model with adaptive routing and 
service level constraints, following a static-dynamic strategy where setup decisions 
are made in the first stage while adapting other decisions based on realized demand. 
An iterative matheuristic (IMH) algorithm is developed to solve the model in three 
phases, gradually refining s etup, i nventory, a nd r outing d ecisions. Computational 
results on benchmark instances demonstrate the value of service level integration, 
adaptive routing, and the impact of the service level granularity, offering practical 
insights for supply chain decision-makers facing uncertainty.

2 Problem Definition

We propose a two-stage formulation for the SPRP-AR, where a single production 
facility serves multiple customers over a finite p lanning horizon under uncertain de-
mand. A fleet of homogeneous vehicles delivers products to customers, and both pro-
duction and transportation decisions must satisfy capacity and inventory constraints. 
In this setting, the first-stage decisions involve determining production setups, while 
second-stage decisions, including production quantities, deliveries, and routing, are 
made after the actual demand is realized. To model demand uncertainty, we use a 
scenario-based approach where each scenario represents a possible realization of cus-
tomer demand. Products can be stored at either the plant or customer locations, and 
any unmet demand may be backlogged and fulfilled later.

To ensure customer satisfaction under uncertainty, we incorporate four distinct 
service level constraints into the model. These include: (1) the α service level, which 
limits the probability of stockouts; (2) the β fill r ate, which controls the proportion 
of demand met immediately; (3) the γ level, which constrains the average backlog to 
average demand ratio; and (4) the δ level, which limits the expected backlog relative 
to its maximum. These service levels are applied with varying levels of granularity,
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either per customer or aggregated across all customers, and either per period or
over the entire planning horizon. Their inclusion directly influences how inventory
and delivery decisions are structured, enabling the model to reflect diverse service
expectations and operational policies.

3 Iterative Matheuristic Algorithm

To solve the SPRP-AR efficiently, we propose an IMH that decomposes the problem
into three subproblems. The first phase solves a simplified two-level lot-sizing problem
with a single dummy customer to quickly generate feasible production setup plans.
This abstraction helps reduce the complexity of the original problem and serves as
a foundation for more detailed planning in later phases. In the second phase, given
the fixed setup plan, we solve a restricted PRP with a single vehicle and aggregated
capacity to determine production quantities and delivery amounts. At this stage,
routing decisions are not yet considered, and the focus is on meeting demand while
ensuring service level feasibility.

In the third phase, we incorporate routing by solving a deterministic multi-vehicle
PRP separately for each scenario. This step refines delivery routes while respecting
service level constraints and previously established decisions. The algorithm alter-
nates between two iterative loops: an outer loop for diversifying setup plans, and
an inner loop for intensifying solutions by refining production and routing based
on updated visit costs. Once feasibility is established, the second phase is updated
to include approximate routing costs, improving solution quality. This structured,
scenario-based approach enables efficient handling of uncertainty, adaptive routing,
and service level measures.

4 Results

We compared the average objective function values for different service level types
across various granularity levels. Figure 1 provides the results for the β service level as
an example. The results show that the plant level-global (βplant) configuration yields
the lowest costs, due to its high flexibility. As service levels are imposed from the
plant’s perspective over the entire horizon, demand imbalances across customers and
periods are absorbed more easily. The customer level-global (βcustomer) case follows,
with higher costs resulting from stricter service enforcement for each customer across
the entire horizon. Interestingly, this configuration still has lower costs than the
plant level-single period (βplant

c ) case, where service levels are applied per period but
aggregated across customers.

In general, imposing service levels for each period leads to higher costs compared 
to global-level enforcement, as it requires more consistent demand satisfaction over
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Figure 1: Objective function values for β service level for different granularity levels

time. Among per-period configurations, customer-level (βcustomer
c ) setting results in

the highest costs, compared to service levels aggregated over all customers. However,
the cost gap between plant and customer granularity levels narrows as the target
service level (TSL) increases. Overall, enforcing service levels at the customer level
increases costs due to stricter fulfillment requirements, while plant-level case offers
greater flexibility. These findings are consistent across multiple settings with varying
numbers of scenarios and uncertainty levels, highlighting the importance of selecting
an appropriate granularity based on operational priorities.

References

[1] Adulyasak, Yossiri and Cordeau, Jean-François and Jans, Raf, Benders Decom-
position for Production Routing Under Demand Uncertainty, Operations Re-
search, 63, 4, 851-867 (2015)

[2] Helber, Stefan and Sahling, Florian and Schimmelpfeng, Katja, Dynamic capac-
itated lot sizing with random demand and dynamic safety stocks, OR Spectrum,
35, 75–105 (2013)

[3] Kermani, Ali and Cordeau, Jean-François and Jans, Raf, A progressive hedging-
based matheuristic for the stochastic production routing problem with adaptive
routing, Computers & Operations Research, 169, 106745 (2024)

[4] Tempelmeier, Horst, Stochastic Lot Sizing Problems, 192, 313–344, Springer,
(2013)

84



A simple heuristic for computing non-stationary
inventory policies

Onur A. Kilic
University of Groningen, Groningen, The Netherlands
o.a.kilic@rug.nl

S. Armagan Tarim
Hacettepe University, Ankara, Turkey
armagan.tarim@hacettepe.edu.tr

Abstract

We consider a finite-horizon periodic-review inventory system with fixed replen-
ishment costs that faces non-stationary demands. The structure of the optimal
control policy for this system has long been known. However, finding optimal
policy parameters requires solving a large-scale stochastic dynamic program.
To circumvent this, we devise a recursion-free approximation for the cost func-
tion of the problem. This translates into an efficient and effective heuristic
to compute policy parameters that significantly outperforms earlier heuristics.
Our approach is easy-to-understand and easy-to-use as it follows by elementary
methods of shortest paths and convex minimization.

1 Introduction

Today, industries are experiencing non-stationary (stochastic and time-varying) de-
mand more frequently as product life cycles are getting increasingly shorter in re-
sponse to fast technological progress and rapid changes in consumer preferences 
(Simchi-Levi et al., 2003; Chopra and Meindl, 2007). When a product life cycle 
spans a short period of time, the magnitude of non-stationarity becomes drastic be-
cause the demand rate changes rapidly as a product moves from one phase of the life 
cycle to another. Also, in most environments, demand is often heavily seasonal and 
has a significant t rend. Therefore, t he d emand r ate a lso changes w ithin t he phases 
of the product life cycle. The conventional methods of inventory control that are 
tailored for stationary demands have very limited applicability in such environments. 
Hence, firms must employ a lternative methods t o e ffectively ma tch th eir su pply to 
non-stationary demand (Kurawarwala and Matsuo, 1996; Graves and Willems, 2008).
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Managing inventories is challenging when demand is non-stationary. That is 
because fluctuations i n d emand must b e r eflected in  re plenishments. Th at is  non-
stationary demand compels non-stationary inventory control. The challenge further 
intensifies when replenishments require fixed costs, as  is  often the case for companies 
with distant suppliers. In such systems, decision-makers are exposed to an inventory 
control problem where the non-stationarity of demand affects not only t he s ize but 
also the timing of replenishments. This also manifests itself in the mathematical 
models of such problems where the associated cost functions (even under the mildest 
of assumptions) are time-dependent and non-convex. It is indeed widely accepted 
that mathematical models of inventory problems with non-stationary demands are 
complicated in terms of computational needs and user understanding (Silver, 1981, 
2008).

This paper aims to address the aforementioned challenges in the context of a 
finite-horizon p eriodic-review i nventory s ystem w ith fi xed re plenishment co sts that 
faces non-stationary demands. The relevance of the system is evident as it appears in 
many retail, wholesale, and industrial environments. The associated inventory control 
problem is well-addressed in the literature. The optimal control policy is known to be 
a non-stationary (s, S) policy (Scarf, 1960). However, finding optimal policy param-
eters is demanding as it requires constructing the optimal cost function recursively 
for each and every period in the planning horizon by solving a stochastic dynamic 
program. This is viable when in case of discrete demands (see e.g. Bollapragada and 
Morton, 1999; Lulli and Sen, 2004), but, even then, it is computationally expensive 
as one needs to consider all possible demand realizations and inventory levels in each 
period—both of which could be arbitrarily large in number. To that end, we propose 
an approximation for the non-convex optimal cost function. Our approximate cost 
function has two important properties. First, it is recursion-free. That is, it can be 
obtained without resorting to a stochastic dynamic program. Second, it is defined as 
the pointwise minimum of only a few convex functions. Hence, while it has multiple 
local minima like the optimal cost function, its minimizer and level sets can easily 
be obtained. These properties enable us to translate the approximate cost function 
into an efficient and effective heuristic to compute pol icy par ameters. The  heuristic 
proceeds with a simple computational procedure wherein the policy parameters for 
all periods in the planning horizon can be obtained by solving a single deterministic 
shortest path problem and a series of root-finding p roblems. We further accelerate this 
computational procedure by means of several algorithmic refinements. These make it 
possible to handle problem instances with hundreds of periods in a matter of seconds. 
We numerically compare our heuristic against the heuristics by Askin (1981) and 
Bollapragada and Morton (1999) as well as the optimal stochastic dynamic program. 
The results show that it significantly o utperforms t he e arlier h euristics a nd yields 
almost-optimal results for a variety of demand patterns and cost parameters. Our 
approach is very accessible as it builds on readily available methods of shortest paths
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and convex minimization. Thus it is appealing for both practical and educational
purposes.

2 Relevant literature

The characterization of optimal control policies for inventory problems has always
been a center of interest in the inventory management literature. In this context,
Scarf’s (1960) proof of the optimality of (s, S) policies is of particular importance.
Scarf considered the finite-horizon dynamic inventory problem with stationary de-
mands and showed that the optimal control decision for each period n can be charac-
terized by two critical values (sn, Sn). That is, a replenishment order should be issued
only if the inventory level is below sn and if so the order quantity should increase the
inventory level to Sn. This seminal result paved the way for a large number of studies.
Iglehart (1963) showed that the optimal policy converges to a stationary (s, S) policy
if the planning horizon is sufficiently long. This is followed by a variety of studies on
exact and approximate methods to compute the optimal stationary (s, S) policies (see
e.g. Veinott and Wagner, 1965; Wagner et al., 1965; Johnson, 1968; Sivazlian, 1971;
Archibald and Silver, 1978; Ehrhardt, 1979; Porteus, 1979; Federgruen and Zipkin,
1984; Zheng and Federgruen, 1991; Feng and Xiao, 2000).

Scarf’s (1960) proof immediately applies to systems with non-stationary demands.
However, while the structure of the optimal policy is known, finding optimal non-
stationary policy parameters is challenging as it requires constructing an optimal
cost function for each period recursively by solving a stochastic dynamic program.
This is viable when demands and hence inventory levels are integer-valued (see e.g.
Bollapragada and Morton, 1999; Lulli and Sen, 2004). However, the difficulty prevails
as it requires evaluating all possible inventory levels and demand realizations in each
period, which could be arbitrarily large in number. Indeed, such a numerical proce-
dure is complex and computationally expensive to be implemented in practice (see
e.g. Bollapragada and Morton, 1999; Silver, 1981, 2008; Neale and Willems, 2009).

Notwithstanding, not much work has been done on the non-stationary inventory 
control problem as compared to its stationary counterpart. Silver (1978) and Askin 
(1981) developed heuristics that determine policy parameters by using the least ex-
pected cost per period criterion. Bollapragada and Morton (1999) proposed a con-
ceptually different approach where the non-stationary problem is approximated by a 
series of stationary problems. These stationary problems are constructed by averag-
ing demands over a number of consecutive periods based on an expected cycle time, 
and the policy parameters of each stationary problem are computed using station-
ary analysis. Xiang et al. (2018) presented an approach where policy parameters are 
approximated by iteratively solving a series of mixed integer non-linear programs for 
each period of the planning horizon. While effective, this method is computationally
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too expensive for practical use. In the current study, we follow the aforementioned
line of research and develop a new approach to compute policy parameters heuristi-
cally, based on approximating the non-convex cost function by a sequence of convex
functions.
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